Gallium







Chemical element with atomic number 31


















































































































































































Gallium,  31Ga
Gallium crystals.jpg
General properties
Pronunciation
/ˈɡæliəm/(GAL-ee-əm)
Appearance silvery blue

Standard atomic weight.mw-parser-output .nobold{font-weight:normal}
Ar, standard(Ga)

7001697230000000000♠69.723(1)[1]
Gallium in the periodic table






















































































































































Hydrogen


Helium

Lithium

Beryllium


Boron

Carbon

Nitrogen

Oxygen

Fluorine

Neon

Sodium

Magnesium


Aluminium

Silicon

Phosphorus

Sulfur

Chlorine

Argon

Potassium

Calcium

Scandium


Titanium

Vanadium

Chromium

Manganese

Iron

Cobalt

Nickel

Copper

Zinc

Gallium

Germanium

Arsenic

Selenium

Bromine

Krypton

Rubidium

Strontium

Yttrium



Zirconium

Niobium

Molybdenum

Technetium

Ruthenium

Rhodium

Palladium

Silver

Cadmium

Indium

Tin

Antimony

Tellurium

Iodine

Xenon

Caesium

Barium

Lanthanum

Cerium

Praseodymium

Neodymium

Promethium

Samarium

Europium

Gadolinium

Terbium

Dysprosium

Holmium

Erbium

Thulium

Ytterbium

Lutetium

Hafnium

Tantalum

Tungsten

Rhenium

Osmium

Iridium

Platinum

Gold

Mercury (element)

Thallium

Lead

Bismuth

Polonium

Astatine

Radon

Francium

Radium

Actinium

Thorium

Protactinium

Uranium

Neptunium

Plutonium

Americium

Curium

Berkelium

Californium

Einsteinium

Fermium

Mendelevium

Nobelium

Lawrencium

Rutherfordium

Dubnium

Seaborgium

Bohrium

Hassium

Meitnerium

Darmstadtium

Roentgenium

Copernicium

Nihonium

Flerovium

Moscovium

Livermorium

Tennessine

Oganesson



Al

Ga

In

zinc ← gallium → germanium


Atomic number (Z) 31
Group group 13 (boron group)
Period
period 4
Block
p-block
Element category
  post-transition metal
Electron configuration [Ar] 3d10 4s2 4p1
Electrons per shell
2, 8, 18, 3
Physical properties

Phase
at STP
solid
Melting point 302.9146 K ​(29.7646 °C, ​85.5763 °F)
Boiling point 2673 K ​(2400 °C, ​4352 °F)[2]

Density (near r.t.)
5.91 g/cm3
when liquid (at m.p.) 6.095 g/cm3
Heat of fusion 5.59 kJ/mol
Heat of vaporization 256 kJ/mol[2]
Molar heat capacity 25.86 J/(mol·K)

Vapor pressure





















P (Pa)
1
10
100
1 k
10 k
100 k
at T (K)
1310
1448
1620
1838
2125
2518


Atomic properties
Oxidation states −5, −4, −2, −1, +1, +2, +3[3] (an amphoteric oxide)
Electronegativity Pauling scale: 1.81
Ionization energies

  • 1st: 578.8 kJ/mol

  • 2nd: 1979.3 kJ/mol

  • 3rd: 2963 kJ/mol

  • (more)

Atomic radius empirical: 135 pm
Covalent radius 122±3 pm
Van der Waals radius 187 pm

Color lines in a spectral range

Spectral lines of gallium
Other properties
Natural occurrence primordial
Crystal structure ​orthorhombic
Orthorhombic crystal structure for gallium


Speed of sound thin rod
2740 m/s (at 20 °C)
Thermal expansion 18 µm/(m·K) (at 25 °C)
Thermal conductivity 40.6 W/(m·K)
Electrical resistivity 270 nΩ·m (at 20 °C)
Magnetic ordering
diamagnetic
Magnetic susceptibility −21.6·10−6 cm3/mol (at 290 K)[4]
Young's modulus 9.8 GPa
Poisson ratio 0.47
Mohs hardness 1.5
Brinell hardness 56.8–68.7 MPa
CAS Number 7440-55-3
History
Naming after Gallia (Latin for: France), homeland of the discoverer
Prediction
Dmitri Mendeleev (1871)

Discovery and first isolation

Lecoq de Boisbaudran (1875)
Main isotopes of gallium


































































Iso­tope

Abun­dance

Half-life
(t1/2)

Decay mode

Pro­duct

66Ga

syn
9.5 h

β+

66Zn

67Ga
syn
3.3 d

ε

67Zn

68Ga
syn
1.2 h
β+

68Zn

69Ga
60.11%

stable

70Ga
syn
21 min

β

70Ge
ε

70Zn

71Ga
39.89%
stable

72Ga
syn
14.1 h
β

72Ge

73Ga
syn
4.9 h
β

73Ge


| references

Gallium is a chemical element with symbol Ga and atomic number 31. It is in group 13 of the periodic table, and thus has similarities to the other metals of the group, aluminium, indium, and thallium. Gallium does not occur as a free element in nature, but as gallium(III) compounds in trace amounts in zinc ores and in bauxite.[6] Elemental gallium is a soft, silvery blue metal at standard temperature and pressure, a brittle solid at low temperatures, and a liquid at temperatures greater than 29.76 °C (85.57 °F) (above room temperature, but below the normal human body temperature of 98.6 °F (37.0 °C), hence, the metal will melt in a person's hands).


The melting point of gallium is used as a temperature reference point. Gallium alloys are used in thermometers as a non-toxic and environmentally friendly alternative to mercury, and can withstand higher temperatures than mercury. The alloy galinstan (70% gallium, 21.5% indium, and 10% tin) has an even lower melting point of −19 °C (−2 °F), well below the freezing point of water.


Since its discovery in 1875, gallium has been used to make alloys with low melting points. It is also used in semiconductors as a dopant in semiconductor substrates.


Gallium is predominantly used in electronics. Gallium arsenide, the primary chemical compound of gallium in electronics, is used in microwave circuits, high-speed switching circuits, and infrared circuits. Semiconducting gallium nitride and indium gallium nitride produce blue and violet light-emitting diodes (LEDs) and diode lasers. Gallium is also used in the production of artificial gadolinium gallium garnet for jewelry.


Gallium has no known natural role in biology. Gallium(III) behaves in a similar manner to ferric salts in biological systems and has been used in some medical applications, including pharmaceuticals and radiopharmaceuticals.




Contents






  • 1 Physical properties


    • 1.1 Isotopes




  • 2 Chemical properties


    • 2.1 Aqueous chemistry


    • 2.2 Oxides and chalcogenides


    • 2.3 Nitrides and pnictides


    • 2.4 Halides


    • 2.5 Hydrides


    • 2.6 Organogallium compounds




  • 3 History


  • 4 Occurrence


  • 5 Production and availability


  • 6 Applications


    • 6.1 Semiconductors


    • 6.2 Galinstan and other alloys


    • 6.3 Biomedical applications


      • 6.3.1 Radiogallium salts




    • 6.4 Other uses




  • 7 Precautions


  • 8 See also


  • 9 References


  • 10 Bibliography


  • 11 External links





Physical properties




Crystallization of gallium from the melt


Elemental gallium is not found in nature, but it is easily obtained by smelting. Very pure gallium metal has a silvery color and its solid metal fractures conchoidally like glass. Gallium liquid expands by 3.10% when it solidifies; therefore, it should not be stored in glass or metal containers because the container may rupture when the gallium changes state. Gallium shares the higher-density liquid state with a short list of other materials that includes water, silicon, germanium, antimony, bismuth, and plutonium.[7]


Gallium attacks most other metals by diffusing into the metal lattice. For example, it diffuses into the grain boundaries of aluminium-zinc alloys[8] and steel,[9] making them very brittle. Gallium easily alloys with many metals, and is used in small quantities in the plutonium-gallium alloy in the plutonium cores of nuclear bombs to stabilize the plutonium crystal structure.[10]


The melting point of gallium, at 302.9146 K (29.7646 °C, 85.5763 °F), is just above room temperature, and is approximately the same as the average summer daytime temperatures in Earth's mid-latitudes. This melting point (mp) is one of the formal temperature reference points in the International Temperature Scale of 1990 (ITS-90) established by the International Bureau of Weights and Measures (BIPM).[11][12][13] The triple point of gallium, 302.9166 K (29.7666 °C, 85.5799 °F), is used by the US National Institute of Standards and Technology (NIST) in preference to the melting point.[14]


The melting point of gallium allows it to melt in the human hand, and then refreeze if removed. The liquid metal has a strong tendency to supercool below its melting point/freezing point: Ga nanoparticles can be kept in the liquid state below 90 K.[15]Seeding with a crystal helps to initiate freezing. Gallium is one of the four non-radioactive metals (with caesium, rubidium, and mercury) that are known to be liquid at, or near, normal room temperature. Of the four, gallium is the only one that is neither highly reactive (rubidium and caesium) nor highly toxic (mercury) and can therefore be used in metal-in-glass high-temperature thermometers. It is also notable for having one of the largest liquid ranges for a metal, and for having (unlike mercury) a low vapor pressure at high temperatures. Gallium's boiling point, 2673 K, is more than eight times higher than its melting point on the absolute scale, the greatest ratio between melting point and boiling point of any element.[16] Unlike mercury, liquid gallium metal wets glass and skin, along with most other materials (with the exceptions of quartz, graphite, and Teflon)[citation needed], making it mechanically more difficult to handle even though it is substantially less toxic and requires far fewer precautions. Gallium painted onto glass is a brilliant mirror.[17] For this reason as well as the metal contamination and freezing-expansion problems, samples of gallium metal are usually supplied in polyethylene packets within other containers.











































Properties of gallium for different crystal axes[18]
Property a b
c

α (~25 °C, µm/m)
16 11 31

ρ (29.7 °C, nΩ·m)
543 174 81
ρ (0 °C, nΩ·m) 480 154 71.6
ρ (77 K, nΩ·m) 101 30.8 14.3
ρ (4.2 K, pΩ·m) 13.8 6.8 1.6


Gallium does not crystallize in any of the simple crystal structures. The stable phase under normal conditions is orthorhombic with 8 atoms in the conventional unit cell. Within a unit cell, each atom has only one nearest neighbor (at a distance of 244 pm). The remaining six unit cell neighbors are spaced 27, 30 and 39 pm farther away, and they are grouped in pairs with the same distance.[19] Many stable and metastable phases are found as function of temperature and pressure.[20]


The bonding between the two nearest neighbors is covalent; hence Ga2dimers are seen as the fundamental building blocks of the crystal. This explains the low melting point relative to the neighbor elements, aluminium and indium. This structure is strikingly similar to that of iodine and forms because of interactions between the single 4p electrons of gallium atoms, further away from the nucleus than the 4s electrons and the [Ar]3d10 core. This phenomenon recurs with mercury with its "pseudo-noble-gas" [Xe]4f145d106s2 electron configuration, which is liquid at room temperature.[21] The 3d10 electrons do not shield the outer electrons very well from the nucleus and hence the first ionisation energy of gallium is greater than that of aluminium.[7]


The physical properties of gallium are highly anisotropic, i.e. have different values along the three major crystallographical axes a, b, and c (see table), producing a significant difference between the linear (α) and volume thermal expansion coefficients. The properties of gallium are strongly temperature-dependent, particularly near the melting point. For example, the coefficient of thermal expansion increases by several hundred percent upon melting.[18]



Isotopes



Gallium has 31 known isotopes, ranging in mass number from 56 to 86. Only two isotopes are stable and occur naturally, gallium-69 and gallium-71. Gallium-69 is more abundant: it makes up about 60.1% of natural gallium, while gallium-71 makes up the remaining 39.9%. All the other isotopes are radioactive, with gallium-67 being the longest-lived (half-life 3.261 days). Isotopes lighter than gallium-69 usually decay through beta plus decay (positron emission) or electron capture to isotopes of zinc, although the lightest few (with mass numbers 56 through 59) decay through prompt proton emission. Isotopes heavier than gallium-71 decay through beta minus decay (electron emission), possibly with delayed neutron emission, to isotopes of germanium, while gallium-70 can decay through both beta minus decay and electron capture. Gallium-67 is unique among the light isotopes in having only electron capture as a decay mode, as its decay energy is not sufficient to allow positron emission.[22] Gallium-67 and gallium-68 (half-life 67.7 min) are both used in nuclear medicine.



Chemical properties



Gallium is found primarily in the +3 oxidation state. The +1 oxidation state is also found in some compounds, although it is less common than it is for gallium's heavier congeners indium and thallium. For example, the very stable GaCl2 contains both gallium(I) and gallium(III) and can be formulated as GaIGaIIICl4; in contrast, the monochloride is unstable above 0 °C, disproportionating into elemental gallium and gallium(III) chloride. Compounds containing Ga–Ga bonds are true gallium(II) compounds, such as GaS (which can be formulated as Ga24+(S2−)2) and the dioxan complex Ga2Cl4(C4H8O2)2.[23]



Aqueous chemistry


Strong acids dissolve gallium, forming gallium(III) salts such as Ga
2
(SO
4
)
3
(gallium sulfate) and Ga(NO
3
)
3
(gallium nitrate). Aqueous solutions of gallium(III) salts contain the hydrated gallium ion, [Ga(H
2
O)
6
]3+
.[24]:1033Gallium(III) hydroxide, Ga(OH)
3
, may be precipitated from gallium(III) solutions by adding ammonia. Dehydrating Ga(OH)
3
at 100 °C produces gallium oxide hydroxide, GaO(OH).[25]:140–141


Alkaline hydroxide solutions dissolve gallium, forming gallate salts (not to be confused with identically-named gallic acid salts) containing the Ga(OH)
4
anion.[26][24]:1033[27] Gallium hydroxide, which is amphoteric, also dissolves in alkali to form gallate salts.[25]:141 Although earlier work suggested Ga(OH)3−
6
as another possible gallate anion,[28] it was not found in later work.[27]



Oxides and chalcogenides


Gallium reacts with the chalcogens only at relatively high temperatures. At room temperature, gallium metal is not reactive with air and water because it forms a passive, protective oxide layer. At higher temperatures, however, it reacts with atmospheric oxygen to form gallium(III) oxide, Ga
2
O
3
.[26] Reducing Ga
2
O
3
with elemental gallium in vacuum at 500 °C to 700 °C yields the dark brown gallium(I) oxide, Ga
2
O
.[25]:285Ga
2
O
is a very strong reducing agent, capable of reducing H
2
SO
4
to H
2
S
.[25]:207 It disproportionates at 800 °C back to gallium and Ga
2
O
3
.[29]


Gallium(III) sulfide, Ga
2
S
3
, has 3 possible crystal modifications.[29]:104 It can be made by the reaction of gallium with hydrogen sulfide (H
2
S
) at 950 °C.[25]:162 Alternatively, Ga(OH)
3
can be used at 747 °C:[30]


2 Ga(OH)
3
+ 3 H
2
S
Ga
2
S
3
+ 6 H
2
O


Reacting a mixture of alkali metal carbonates and Ga
2
O
3
with H
2
S
leads to the formation of thiogallates containing the [Ga
2
S
4
]2−
anion. Strong acids decompose these salts, releasing H
2
S
in the process.[29]:104–105 The mercury salt, HgGa
2
S
4
, can be used as a phosphor.[31]


Gallium also forms sulfides in lower oxidation states, such as gallium(II) sulfide and the green gallium(I) sulfide, the latter of which is produced from the former by heating to 1000 °C under a stream of nitrogen.[29]:94


The other binary chalcogenides, Ga
2
Se
3
and Ga
2
Te
3
, have the zincblende structure. They are all semiconductors but are easily hydrolysed and have limited utility.[29]:104



Nitrides and pnictides


@media all and (max-width:720px){.mw-parser-output .tmulti>.thumbinner{width:100%!important;max-width:none!important}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:none!important;width:100%!important;text-align:center}}




Gallium nitride (left) and gallium arsenide (right) crystals


Gallium reacts with ammonia at 1050 °C to form gallium nitride, GaN. Gallium also forms binary compounds with phosphorus, arsenic, and antimony: gallium phosphide (GaP), gallium arsenide (GaAs), and gallium antimonide (GaSb). These compounds have the same structure as ZnS, and have important semiconducting properties.[24]:1034 GaP, GaAs, and GaSb can be synthesized by the direct reaction of gallium with elemental phosphorus, arsenic, or antimony.[29]:99 They exhibit higher electrical conductivity than GaN.[29]:101 GaP can also be synthesized by reacting Ga
2
O
with phosphorus at low temperatures.[32]


Gallium forms ternary nitrides; for example:[29]:99



Li
3
Ga
+ N
2
Li
3
GaN
2


Similar compounds with phosphorus and arsenic are possible: Li
3
GaP
2
and Li
3
GaAs
2
. These compounds are easily hydrolyzed by dilute acids and water.[29]:101



Halides



Gallium(III) oxide reacts with fluorinating agents such as HF or F
2
to form gallium(III) fluoride, GaF
3
. It is an ionic compound strongly insoluble in water. However, it dissolves in hydrofluoric acid, in which it forms an adduct with water, GaF
3
·3H
2
O
. Attempting to dehydrate this adduct forms GaF
2
OH·nH
2
O
. The adduct reacts with ammonia to form GaF
3
·3NH
3
, which can then be heated to form anhydrous GaF
3
.[25]:128–129


Gallium trichloride is formed by the reaction of gallium metal with chlorine gas.[26] Unlike the trifluoride, gallium(III) chloride exists as dimeric molecules, Ga
2
Cl
6
, with a melting point of 78 °C. Eqivalent compounds are formed with bromine and iodine, Ga
2
Br
6
and Ga
2
I
6
.[25]:133


Like the other group 13 trihalides, gallium(III) halides are Lewis acids, reacting as halide acceptors with alkali metal halides to form salts containing GaX
4
anions, where X is a halogen. They also react with alkyl halides to form carbocations and GaX
4
.[25]:136–137


When heated to a high temperature, gallium(III) halides react with elemental gallium to form the respective gallium(I) halides. For example, GaCl
3
reacts with Ga to form GaCl:


2 Ga + GaCl
3
⇌ 3 GaCl (g)

At lower temperatures, the equilibrium shifts toward the left and GaCl disproportionates back to elemental gallium and GaCl
3
. GaCl can also be produced by reacting Ga with HCl at 950 °C; the product can be condensed as a red solid.[24]:1036


Gallium(I) compounds can be stabilized by forming adducts with Lewis acids. For example:


GaCl + AlCl
3
Ga+
[AlCl
4
]


The so-called "gallium(II) halides", GaX
2
, are actually adducts of gallium(I) halides with the respective gallium(III) halides, having the structure Ga+
[GaX
4
]
. For example:[26][24]:1036[33]


GaCl + GaCl
3
Ga+
[GaCl
4
]



Hydrides


Like aluminium, gallium also forms a hydride, GaH
3
, known as gallane, which may be produced by reacting lithium gallanate (LiGaH
4
) with gallium(III) chloride at −30 °C:[24]:1031


3 LiGaH
4
+ GaCl
3
→ 3 LiCl + 4 GaH
3


In the presence of dimethyl ether as solvent, GaH
3
polymerizes to (GaH
3
)
n
. If no solvent is used, the dimer Ga
2
H
6
(digallane) is formed as a gas. Its structure is similar to diborane, having two hydrogen atoms bridging the two gallium centers,[24]:1031 unlike α-AlH
3
in which aluminium has a coordination number of 6.[24]:1008


Gallane is unstable above −10 °C, decomposing to elemental gallium and hydrogen.[34]



Organogallium compounds



Organogallium compounds are of similar reactivity to organoindium compounds, less reactive than organoaluminium compounds, but more reactive than organothallium compounds.[35] Alkylgalliums are monomeric. Lewis acidity decreases in the order Al > Ga > In and as a result organogallium compounds do not form bridged dimers as organoaluminum compounds do. Organogallium compounds are also less reactive than organoaluminum compounds. They do form stable peroxides.[36] These alkylgalliums are liquids at room temperature, having low melting points, and are quite mobile and flammable. Triphenylgallium is monomeric in solution, but its crystals form chain structures due to weak intermolecluar Ga···C interactions.[35]


Gallium trichloride is a common starting reagent for the formation of organogallium compounds, such as in carbogallation reactions.[37] Gallium trichloride reacts with lithium cyclopentadienide in diethyl ether to form the trigonal planar gallium cyclopentadienyl complex GaCp3. Gallium(I) forms complexes with arene ligands such as hexamethylbenzene. Because this ligand is quite bulky, the structure of the [Ga(η6-C6Me6)]+ is that of a half-sandwich. Less bulky ligands such as mesitylene allow two ligands to be attached to the central gallium atom in a bent sandwich structure. Benzene is even less bulky and allows the formation of dimers: an example is [Ga(η6-C6H6)2] [GaCl4]·3C6H6.[35]



History




File:Gallium drops.ogvPlay media

Small gallium droplets fusing together


In 1871, the existence of gallium was first predicted by Russian chemist Dmitri Mendeleev, who named it "eka-aluminium" from its position in his periodic table. He also predicted several properties of eka-aluminium that correspond closely to the real properties of gallium, such as its density, melting point, oxide character and bonding in chloride.[38]









































Comparison between Mendeleev's 1871 predictions and the known properties of gallium[39]
Property
Mendeleev's predictions
Actual properties

Atomic weight
~68
69.723
Density
5.9 g/cm3
5.904 g/cm3
Melting point
Low
29.767 °C
Formula of oxide
M2O3
Ga2O3
Density of oxide
5.5 g/cm3
5.88 g/cm3
Nature of hydroxide
amphoteric
amphoteric

Mendeleev further predicted that eka-aluminium would be discovered by means of the spectroscope, and that metallic eka-aluminium would dissolve slowly in both acids and alkalis and would not react with air. He also predicted that M2O3 would dissolve in acids to give MX3 salts, that eka-aluminium salts would form basic salts, that eka-aluminium sulfate should form alums, and that anhydrous MCl3 should have a greater volatility than ZnCl2: all of these predictions turned out to be true.[39]


Gallium was discovered using spectroscopy by French chemist Paul Emile Lecoq de Boisbaudran in 1875 from its characteristic spectrum (two violet lines) in a sample of sphalerite.[40] Later that year, Lecoq obtained the free metal by electrolysis of the hydroxide in potassium hydroxide solution. He named the element "gallia", from Latin Gallia meaning Gaul, after his native land of France. It was later claimed that, in one of those multilingual puns so beloved by men of science in the 19th century, he had also named gallium after himself: "Le coq" is French for "the rooster" and the Latin word for "rooster" is "gallus". In an 1877 article, Lecoq denied this conjecture.[41] Originally, de Boisbaudran determined the density of gallium as 4.7 g/cm3, the only property that failed to match Mendeleev's predictions; Mendeleev then wrote to him and suggested that he should remeasure the density, and de Boisbaudran then obtained the correct value of 5.9 g/cm3, that Mendeleev had predicted almost exactly.[39]


From its discovery in 1875 until the era of semiconductors, the primary uses of gallium were high-temperature thermometrics and metal alloys with unusual properties of stability or ease of melting (some such being liquid at room temperature). The development of gallium arsenide as a direct band gap semiconductor in the 1960s ushered in the most important stage in the applications of gallium.[17]



Occurrence


Gallium does not exist as a free element in the Earth's crust, and the few high-content minerals, such as gallite (CuGaS2), are too rare to serve as a primary source.[42] The abundance in the Earth's crust is approximately 16.9 ppm.[43] This is comparable to the crustal abundances of lead, cobalt and niobium. Yet unlike these elements, gallium does not form its own ore deposits with concentrations of > 0.1 wt.% in ore. Rather it occurs at trace concentrations similar to the crustal value in zinc ores,[42][44] and at somewhat higher values (~ 50 ppm) in aluminium ores, from both of which it is extracted as a by-product. This lack of independent deposits is due to gallium's geochemical behaviour, showing no strong enrichment in the processes relevant to the formation of most ore deposits.[42]


The United States Geological Survey (USGS) estimates that more than 1 million tons of gallium is contained in known reserves of bauxite and zinc ores.[45][46] Some coal flue dusts contain small quantities of gallium, typically less than 1% by weight.[47][48][49][50] However, these amounts are not extractable without mining of the host materials (see below). Thus, the availability of gallium is fundamentally determined by the rate at which bauxite, zinc ores (and coal) are extracted.



Production and availability




99.9999% (6N) gallium sealed in vacuum ampoule


Gallium is produced exclusively as a by-product during the processing of the ores of other metals. Its main source material is bauxite, the chief ore of aluminium, but minor amounts are also extracted from sulfidic zinc ores (sphalerite being the main host mineral). In the past, certain coals were an important source.


During the processing of bauxite to alumina in the Bayer process, gallium accumulates in the sodium hydroxide liquor. From this it can be extracted by a variety of methods. The most recent is the use of ion-exchange resin.[6] Achievable extraction efficiencies critically depend on the original concentration in the feed bauxite. At a typical feed concentration of 50 ppm, about 15% of the contained gallium is extractable.[6] The remainder reports to the red mud and aluminium hydroxide streams. Gallium is removed from the ion-exchange resin in solution. Electrolysis then gives gallium metal. For semiconductor use, it is further purified with zone melting or single-crystal extraction from a melt (Czochralski process). Purities of 99.9999% are routinely achieved and commercially available.[51]




Bauxite mine in Jamaica (1984)


Its by-product status means that gallium production is constrained by the amount of bauxite, sulfidic zinc ores (and coal) extracted per year. Therefore, its availability needs to be discussed in terms of supply potential. The supply potential of a by-product is defined as that amount which is economically extractable from its host materials per year under current market conditions (i.e. technology and price).[52] Reserves and resources are not relevant for by-products, since they cannot be extracted independently from the main-products.[53] Recent estimates put the supply potential of gallium at a minimum of 2,100 t/yr from bauxite, 85 t/yr from sulfidic zinc ores, and potentially 590 t/yr from coal.[6] These figures are significantly greater than current production (375 t in 2016).[54] Thus, major future increases in the by-product production of gallium will be possible without significant increases in production costs or price. The average gallium price in 2015 was $US317/kg, down from $US688/kg in 2011.[55]



Applications


Semiconductor applications dominate the commercial demand for gallium, accounting for 98% of the total. The next major application is for gadolinium gallium garnets.[56]



Semiconductors




Gallium-based blue LEDs


Extremely high-purity (>99.9999%) gallium is commercially available to serve the semiconductor industry. Gallium arsenide (GaAs) and gallium nitride (GaN) used in electronic components represented about 98% of the gallium consumption in the United States in 2007. About 66% of semiconductor gallium is used in the U.S. in integrated circuits (mostly gallium arsenide), such as the manufacture of ultra-high-speed logic chips and MESFETs for low-noise microwave preamplifiers in cell phones. About 20% of this gallium is used in optoelectronics.[45] Worldwide, gallium arsenide makes up 95% of the annual global gallium consumption.[51]


Gallium arsenide is used in a variety of optoelectronic infrared devices. Aluminium gallium arsenide (AlGaAs) is used in high-power infrared laser diodes. The semiconductors gallium nitride and indium gallium nitride are used in blue and violet optoelectronic devices, mostly laser diodes and light-emitting diodes. For example, gallium nitride 405 nm diode lasers are used as a violet light source for higher-density Blu-ray Disc compact data disc drives.[57]


Multijunction photovoltaic cells, developed for satellite power applications, are made by molecular-beam epitaxy or metalorganic vapour-phase epitaxy of thin films of gallium arsenide, indium gallium phosphide, or indium gallium arsenide. The Mars Exploration Rovers and several satellites use triple-junction gallium arsenide on germanium cells.[58] Gallium is also a component in photovoltaic compounds (such as copper indium gallium selenium sulfide Cu(In,Ga)(Se,S)2) used in solar panels as a cost-efficient alternative to crystalline silicon.[59]



Galinstan and other alloys




Galinstan from a broken thermometer, easily wetting a piece of glass


Gallium readily alloys with most metals, and is used as an ingredient in low-melting alloys. The nearly eutectic alloy of gallium, indium, and tin is a room temperature liquid used in medical thermometers. This alloy, with the trade-name Galinstan (with the "-stan" referring to the tin, stannum in Latin), has a low freezing point of −19 °C (−2.2 °F).[60] It has been suggested that this family of alloys could also be used to cool computer chips in place of water.[61] Gallium alloys have been evaluated as substitutes for mercury dental amalgams, but these materials have yet to see wide acceptance.


Because gallium wets glass or porcelain, gallium can be used to create brilliant mirrors. When the wetting action of gallium-alloys is not desired (as in Galinstan glass thermometers), the glass must be protected with a transparent layer of gallium(III) oxide.[62]


The plutonium used in nuclear weapon pits is stabilized in the δ phase and made machinable by alloying with gallium.[63]



Biomedical applications


Although gallium has no natural function in biology, gallium ions interact with processes in the body in a manner similar to iron(III). Because these processes include inflammation, a marker for many disease states, several gallium salts are used (or are in development) as pharmaceuticals and radiopharmaceuticals in medicine. Interest in the anticancer properties of gallium emerged when it was discovered that 67Ga(III) citrate injected in tumor-bearing animals localized to sites of tumor. Clinical trials have shown gallium nitrate to have antineoplastic activity against non-Hodgkin’s lymphoma and urothelial cancers. A new generation of gallium-ligand complexes such as tris(8-quinolinolato)gallium(III) (KP46)
and gallium maltolate has emerged.[64]Gallium nitrate (brand name Ganite) has been used as an intravenous pharmaceutical to treat hypercalcemia associated with tumor metastasis to bones. Gallium is thought to interfere with osteoclast function, and the therapy may be effective when other treatments have failed.[65]Gallium maltolate, an oral, highly absorbable form of gallium(III) ion, is an anti-proliferative to pathologically proliferating cells, particularly cancer cells and some bacteria that accept it in place of ferric iron (Fe3+). Researchers are conducting clinical and preclinical trials on this compound as a potential treatment for a number of cancers, infectious diseases, and inflammatory diseases.[66]


When gallium ions are mistakenly taken up in place of iron(III) by bacteria such as Pseudomonas, the ions interfere with respiration, and the bacteria die. This happens because iron is redox-active, allowing the transfer of electrons during respiration, while gallium is redox-inactive.[67][68]


A complex amine-phenol Ga(III) compound MR045 is selectively toxic to parasites resistant to chloroquine, a common drug against malaria. Both the Ga(III) complex and chloroquine act by inhibiting crystallization of hemozoin, a disposal product formed from the digestion of blood by the parasites.[69][70]



Radiogallium salts


Gallium-67 salts such as gallium citrate and gallium nitrate are used as radiopharmaceutical agents in the nuclear medicine imaging known as gallium scan. The radioactive isotope 67Ga is used, and the compound or salt of gallium is unimportant. The body handles Ga3+ in many ways as though it were Fe3+, and the ion is bound (and concentrates) in areas of inflammation, such as infection, and in areas of rapid cell division. This allows such sites to be imaged by nuclear scan techniques.[71]


Gallium-68, a positron emitter with a half-life of 68 min, is now used as a diagnostic radionuclide in PET-CT when linked to pharmaceutical preparations such as DOTATOC, a somatostatin analogue used for neuroendocrine tumors investigation, and DOTA-TATE, a newer one, used for neuroendocrine metastasis and lung neuroendocrine cancer, such as certain types of microcytoma. Gallium-68's preparation as a pharmaceutical is chemical, and the radionuclide is extracted by elution from germanium-68, a synthetic radioisotope of germanium, in gallium-68 generators.[72]



Other uses


Gallium is used for neutrino detection. Possibly the largest amount of pure gallium ever collected in a single spot is the Gallium-Germanium Neutrino Telescope used by the SAGE experiment at the Baksan Neutrino Observatory in Russia. This detector contains 55–57 tonnes (~9 cubic metres) of liquid gallium.[73] Another experiment was the GALLEX neutrino detector operated in the early 1990s in an Italian mountain tunnel. The detector contained 12.2 tons of watered gallium-71. Solar neutrinos caused a few atoms of 71Ga to become radioactive 71Ge, which were detected. This experiment showed that the solar neutrino flux is 40% less than theory predicted. This deficit was not explained until better solar neutrino detectors and theories were constructed (see SNO).[74]


Gallium is also used as a liquid metal ion source for a focused ion beam. For example, a focused gallium-ion beam was used to create the world's smallest book, Teeny Ted from Turnip Town.[75] Another use of gallium is as an additive in glide wax for skis, and other low-friction surface materials.[76]


A well-known practical joke among chemists is to fashion gallium spoons and use them to serve tea to unsuspecting guests, since gallium has a similar appearance to its lighter homolog aluminium. The spoons then melt in the hot tea.[77]



































Gallium
Hazards

GHS pictograms

The corrosion pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)

GHS signal word
Danger

GHS hazard statements


H290, H318

GHS precautionary statements


P280, P305, P351, P338, P310[78]

NFPA 704


[79]



Flammability code 0: Will not burn. E.g., water
Health code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g., chloroform
Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen
Special hazards (white): no code
NFPA 704 four-colored diamond


0


2


0





Precautions


Metallic gallium is not toxic. However, exposure to gallium halide complexes can result in acute toxicity.[80] The Ga3+ ion of soluble gallium salts tends to form the insoluble hydroxide when injected in large doses; precipitation of this hydroxide resulted in renal toxicity in animals. In lower doses, soluble gallium is tolerated well and does not accumulate as a poison, instead being excreted mostly through urine. Excretion of gallium occurs in two phases: the first phase has a biological half-life of 1 hour, while the second has a biological half-life of 25 hours.[71]



See also



















References





  1. ^ Meija, J.; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry. 88 (3): 265–91. doi:10.1515/pac-2015-0305..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ ab Zhang Y; Evans JRG; Zhang S (2011). "Corrected Values for Boiling Points and Enthalpies of Vaporization of Elements in Handbooks". J. Chem. Eng. Data. 56 (2): 328–337. doi:10.1021/je1011086.


  3. ^ Hofmann, Patrick (1997). Colture. Ein Programm zur interaktiven Visualisierung von Festkörperstrukturen sowie Synthese, Struktur und Eigenschaften von binären und ternären Alkali- und Erdalkalimetallgalliden (PDF) (in German). PhD Thesis, ETH Zurich. p. 72. doi:10.3929/ethz-a-001859893. ISBN 3728125970.


  4. ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.


  5. ^ Hofmann, Patrick (1997). Colture. Ein Programm zur interaktiven Visualisierung von Festkörperstrukturen sowie Synthese, Struktur und Eigenschaften von binären und ternären Alkali- und Erdalkalimetallgalliden (PDF) (in German). PhD Thesis, ETH Zurich. p. 72. doi:10.3929/ethz-a-001859893. ISBN 3728125970.


  6. ^ abcd Frenzel, Max; Ketris, Marina P.; Seifert, Thomas; Gutzmer, Jens (March 2016). "On the current and future availability of gallium". Resources Policy. 47: 38–50. doi:10.1016/j.resourpol.2015.11.005.


  7. ^ ab Greenwood and Earnshaw, p. 222


  8. ^ Tsai, W. L; Hwu, Y.; Chen, C. H.; Chang, L. W.; Je, J. H.; Lin, H. M.; Margaritondo, G. (2003). "Grain boundary imaging, gallium diffusion and the fracture behavior of Al–Zn Alloy – An in situ study". Nuclear Instruments and Methods in Physics Research Section B. 199: 457–463. Bibcode:2003NIMPB.199..457T. doi:10.1016/S0168-583X(02)01533-1.


  9. ^ Vigilante, G. N.; Trolano, E.; Mossey, C. (June 1999). "Liquid Metal Embrittlement of ASTM A723 Gun Steel by Indium and Gallium". Defense Technical Information Center. Retrieved 2009-07-07.


  10. ^ Sublette, Cary (2001-09-09). "Section 6.2.2.1". Nuclear Weapons FAQ. Retrieved 2008-01-24.


  11. ^ Preston–Thomas, H. (1990). "The International Temperature Scale of 1990 (ITS-90)" (PDF). Metrologia. 27 (1): 3–10. Bibcode:1990Metro..27....3P. doi:10.1088/0026-1394/27/1/002.


  12. ^ "ITS-90 documents at Bureau International de Poids et Mesures".


  13. ^ Magnum, B. W.; Furukawa, G. T. (August 1990). "Guidelines for Realizing the International Temperature Scale of 1990 (ITS-90)" (PDF). National Institute of Standards and Technology. NIST TN 1265. Archived from the original (PDF) on 2003-07-04.


  14. ^ Strouse, Gregory F. (1999). "NIST realization of the gallium triple point". National Institute of Standards and Technology. Proc. TEMPMEKO 1999 1 (1999): 147-152. Retrieved 2016-10-30.


  15. ^ Parravicini, G. B.; Stella, A.; Ghigna, P.; Spinolo, G.; Migliori, A.; d’Acapito, F.; Kofman, R. Appl. Phys. Lett. 2006, 89, 033123


  16. ^ Greenwood and Earnshaw, p. 224


  17. ^ ab Greenwood and Earnshaw, p. 221


  18. ^ ab Rosebury, Fred (1992). Handbook of Electron Tube and Vacuum Techniques. Springer. p. 26. ISBN 978-1-56396-121-2.


  19. ^ M. Bernascino; et al. (1995). "Ab initio calculations of structural and electronic properties of gallium solid-state phases". Phys. Rev. B. 52 (14): 9988–9998. Bibcode:1995PhRvB..52.9988B. doi:10.1103/PhysRevB.52.9988.


  20. ^ "Phase Diagrams of the Elements", David A. Young, UCRL-51902 "Prepared for the U.S. Energy Research & Development Administration under contract No. W-7405-Eng-48". (1975)


  21. ^ Greenwood and Earnshaw, p. 223


  22. ^ Audi, Georges; Bersillon, O.; Blachot, J.; Wapstra, A. H. (2003). "The NUBASE Evaluation of Nuclear and Decay Properties". Nuclear Physics A. 729 (1): 3–128. Bibcode:2003NuPhA.729....3A. CiteSeerX 10.1.1.692.8504. doi:10.1016/j.nuclphysa.2003.11.001.


  23. ^ Greenwood and Earnshaw, p. 240


  24. ^ abcdefgh Wiberg, Egon; Wiberg, Nils; Holleman, Arnold Frederick (2001). Inorganic chemistry. Academic Press. ISBN 978-0-12-352651-9.


  25. ^ abcdefgh Downs, Anthony John (1993). Chemistry of aluminium, gallium, indium, and thallium. Springer. ISBN 978-0-7514-0103-5.


  26. ^ abcd Eagleson, Mary, ed. (1994). Concise encyclopedia chemistry. Walter de Gruyter. p. 438. ISBN 978-3-11-011451-5.


  27. ^ ab Sipos, P. L.; Megyes, T. N.; Berkesi, O. (2008). "The Structure of Gallium in Strongly Alkaline, Highly Concentrated Gallate Solutions—a Raman and 71
    Ga
    -NMR Spectroscopic Study". J Solution Chem. 37 (10): 1411–1418. doi:10.1007/s10953-008-9314-y.



  28. ^ Hampson, N. A. (1971). Harold Reginald Thirsk, ed. Electrochemistry—Volume 3: Specialist periodical report. Great Britain: Royal Society of Chemistry. p. 71. ISBN 978-0-85186-027-5.


  29. ^ abcdefghi Greenwood, N. N. (1962). Harry Julius Emeléus; Alan G. Sharpe, eds. Advances in inorganic chemistry and radiochemistry. 5. Academic Press. pp. 94–95. ISBN 978-0-12-023605-3.


  30. ^ Madelung, Otfried (2004). Semiconductors: data handbook (3rd ed.). Birkhäuser. pp. 276–277. ISBN 978-3-540-40488-0.


  31. ^ Krausbauer, L.; Nitsche, R.; Wild, P. (1965). "Mercury gallium sulfide, HgGa
    2
    S
    4
    , a new phosphor". Physica. 31 (1): 113–121. Bibcode:1965Phy....31..113K. doi:10.1016/0031-8914(65)90110-2.



  32. ^ Michelle Davidson (2006). Inorganic Chemistry. Lotus Press. p. 90. ISBN 978-81-89093-39-6.


  33. ^ Arora, Amit (2005). Text Book Of Inorganic Chemistry. Discovery Publishing House. pp. 389–399. ISBN 978-81-8356-013-9.


  34. ^ Downs, Anthony J.; Pulham, Colin R. (1994). Sykes, A. G., ed. Advances in Inorganic Chemistry. 41. Academic Press. pp. 198–199. ISBN 978-0-12-023641-1.


  35. ^ abc Greenwoood and Earnshaw, pp. 262–5


  36. ^ W, Uhl and M. R. Halvagar; et al. (2009). "Reducing Ga-H and Ga-C Bonds in Close Proximity to Oxidizing Peroxo Groups: Conflicting Properties in Single Molecules". Chemistry: A European Journal. 15 (42): 11298–11306. doi:10.1002/chem.200900746. PMID 19780106.


  37. ^ Amemiya, Ryo (2005). "GaCl3 in Organic Synthesis". European Journal of Organic Chemistry. 2005 (24): 5145–5150. doi:10.1002/ejoc.200500512.


  38. ^ Ball, Philip (2002). The Ingredients: A Guided Tour of the Elements. Oxford University Press. p. 105. ISBN 978-0-19-284100-1.


  39. ^ abc Greenwood and Earnshaw, p. 217.


  40. ^ de Boisbaudran, Lecoq (1835–1965). "Caractères chimiques et spectroscopiques d'un nouveau métal, le gallium, découvert dans une blende de la mine de Pierrefitte, vallée d'Argelès (Pyrénées)". Comptes Rendus. 81: 493. Retrieved 2008-09-23.


  41. ^ Weeks, Mary Elvira (1932). "The discovery of the elements. XIII. Some elements predicted by Mendeleeff". Journal of Chemical Education. 9 (9): 1605–1619. Bibcode:1932JChEd...9.1605W. doi:10.1021/ed009p1605.


  42. ^ abc "The distribution of gallium, germanium and indium in conventional and non-conventional resources - Implications for global availability (PDF Download Available)". ResearchGate. doi:10.13140/rg.2.2.20956.18564. Retrieved 2017-06-02.


  43. ^ Burton, J. D.; Culkin, F.; Riley, J. P. (2007). "The abundances of gallium and germanium in terrestrial materials". Geochimica et Cosmochimica Acta. 16 (1): 151–180. Bibcode:1959GeCoA..16..151B. doi:10.1016/0016-7037(59)90052-3.


  44. ^ Frenzel, Max; Hirsch, Tamino; Gutzmer, Jens (July 2016). "Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type — A meta-analysis". Ore Geology Reviews. 76: 52–78. doi:10.1016/j.oregeorev.2015.12.017.


  45. ^ ab Kramer, Deborah A. "Mineral Commodity Summary 2006: Gallium" (PDF). United States Geological Survey. Retrieved 2008-11-20.


  46. ^ Kramer, Deborah A. "Mineral Yearbook 2006: Gallium" (PDF). United States Geological Survey. Retrieved 2008-11-20.


  47. ^ Xiao-quan, Shan; Wen, Wang & Bei, Wen (1992). "Determination of gallium in coal and coal fly ash by electrothermal atomic absorption spectrometry using slurry sampling and nickel chemical modification". Journal of Analytical Atomic Spectrometry. 7 (5): 761. doi:10.1039/JA9920700761.


  48. ^ "Gallium in West Virginia Coals". West Virginia Geological and Economic Survey. 2002-03-02.


  49. ^ Font, O; Querol, Xavier; Juan, Roberto; Casado, Raquel; Ruiz, Carmen R.; López-Soler, Ángel; Coca, Pilar; Peña, Francisco García (2007). "Recovery of gallium and vanadium from gasification fly ash". Journal of Hazardous Materials. 139 (3): 413–23. doi:10.1016/j.jhazmat.2006.02.041. PMID 16600480.


  50. ^ Headlee, A. J. W. & Hunter, Richard G. (1953). "Elements in Coal Ash and Their Industrial Significance". Industrial and Engineering Chemistry. 45 (3): 548–551. doi:10.1021/ie50519a028.


  51. ^ ab Moskalyk, R. R. (2003). "Gallium: the backbone of the electronics industry". Minerals Engineering. 16 (10): 921–929. doi:10.1016/j.mineng.2003.08.003.


  52. ^ Frenzel, M; Tolosana-Delgado, R; Gutzmer, J (2015). "Assessing the supply potential of high-tech metals - A general method". Resources Policy. 46: 45–58. doi:10.1016/j.resourpol.2015.08.002 – via Elsevier Sciencedirect.


  53. ^ Frenzel, Max; Mikolajczak, Claire; Reuter, Markus A.; Gutzmer, Jens (June 2017). "Quantifying the relative availability of high-tech by-product metals – The cases of gallium, germanium and indium". Resources Policy. 52: 327–335. doi:10.1016/j.resourpol.2017.04.008.


  54. ^ Gallium - In: USGS Mineral Commodity Summaries (PDF). United States Geological Survey. 2017.


  55. ^ Kelly, TD; Matos, GR (2015). "Historical Statistics for Mineral and Material Commodities in the United States". Retrieved 2017-06-02.


  56. ^ Greber, J. F. (2012) "Gallium and Gallium Compounds" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, doi:10.1002/14356007.a12_163.


  57. ^ Coleman, James J.; Jagadish, Chennupati; Catrina Bryce, A. (2012-05-02). Advances in Semiconductor Lasers. pp. 150–151. ISBN 978-0-12-391066-0.


  58. ^ Crisp, D.; Pathare, A.; Ewell, R. C. (2004). "The performance of gallium arsenide/germanium solar cells at the Martian surface". Acta Astronautica. 54 (2): 83–101. Bibcode:2004AcAau..54...83C. doi:10.1016/S0094-5765(02)00287-4.


  59. ^ Alberts, V.; Titus J.; Birkmire R. W. (2003). "Material and device properties of single-phase Cu(In,Ga)(Se,S)2 alloys prepared by selenization/sulfurization of metallic alloys". Thin Solid Films. 451–452: 207–211. Bibcode:2004TSF...451..207A. doi:10.1016/j.tsf.2003.10.092.


  60. ^ Surmann, P; Zeyat, H (Nov 2005). "Voltammetric analysis using a self-renewable non-mercury electrode". Analytical and Bioanalytical Chemistry. 383 (6): 1009–13. doi:10.1007/s00216-005-0069-7. ISSN 1618-2642. PMID 16228199.


  61. ^ Knight, Will (2005-05-05). "Hot chips chilled with liquid metal". Retrieved 2008-11-20.


  62. ^ United States. Office of Naval Research. Committee on the Basic Properties of Liquid Metals, U.S. Atomic Energy Commission (1954). Liquid-metals handbook. U.S. Govt. Print. Off. p. 128.


  63. ^ Besmann, Theodore M. (2005). "Thermochemical Behavior of Gallium in Weapons-Material-Derived Mixed-Oxide Light Water Reactor (LWR) Fuel". Journal of the American Ceramic Society. 81 (12): 3071–3076. doi:10.1111/j.1151-2916.1998.tb02740.x.


  64. ^ Chitambar, Christopher R. (2018). "Chapter 10. Gallium Complexes as Anticancer drugs". In Sigel, Astrid; Sigel, Helmut; Freisinger, Eva; Sigel, Roland K. O. Metallo-Drugs: Development and Action of Anticancer Agents. Metal Ions in Life Sciences. 18. Berlin: de Gruyter GmbH. pp. 281–301. doi:10.1515/9783110470734-016. ISBN 9783110470734. PMID 29394029.


  65. ^ "gallium nitrate". Archived from the original on 2009-06-08. Retrieved 2009-07-07.


  66. ^ Bernstein, L. R.; Tanner, T.; Godfrey, C. & Noll, B. (2000). "Chemistry and Pharmacokinetics of Gallium Maltolate, a Compound With High Oral Gallium Bioavailability". Metal-Based Drugs. 7 (1): 33–47. doi:10.1155/MBD.2000.33. PMC 2365198. PMID 18475921.


  67. ^ "A Trojan-horse strategy selected to fight bacteria". INFOniac.com. 2007-03-16. Retrieved 2008-11-20.


  68. ^ Smith, Michael (2007-03-16). "Gallium May Have Antibiotic-Like Properties". MedPage Today. Retrieved 2008-11-20.


  69. ^ Goldberg D. E.; Sharma V.; Oksman A.; Gluzman I. Y.; Wellems T. E.; Piwnica-Worms D. (1997). "Probing the chloroquine resistance locus of Plasmodium falciparum with a novel class of multidentate metal(III) coordination complexes". J. Biol. Chem. 272 (10): 6567–72. doi:10.1074/jbc.272.10.6567. PMID 9045684.


  70. ^ Biot, Christophe; Dive, Daniel (2010). "Bioorganometallic Chemistry and Malaria". Medicinal Organometallic Chemistry. Topics in Organometallic Chemistry. 32. p. 155. doi:10.1007/978-3-642-13185-1_7. ISBN 978-3-642-13184-4.


  71. ^ ab Nordberg, Gunnar F.; Fowler, Bruce A.; Nordberg, Monica (7 August 2014). Handbook on the Toxicology of Metals (4th ed.). Academic Press. pp. 788–90. ISBN 978-0-12-397339-9.


  72. ^ Banerjee, Sangeeta Ray; Pomper, Martin G. (June 2013). "Clinical Applications of Gallium-68". Appl. Radiat. Isot. 76: 2–13. doi:10.1016/j.apradiso.2013.01.039. PMC 3664132. PMID 23522791.


  73. ^ "Russian American Gallium Experiment". 2001-10-19. Archived from the original on 2010-07-05. Retrieved 2009-06-24.


  74. ^ "Neutrino Detectors Experiments: GALLEX". 1999-06-26. Retrieved 2008-11-20.


  75. ^ "Nano lab produces world's smallest book". Simon Fraser University. 11 April 2007. Retrieved 31 January 2013.


  76. ^ US 5069803, Sugimura, Kentaro; Shoji Hasimoto & Takayuki Ono, "Use of a synthetic resin composition containing gallium particles in the glide surfacing material of skis and other applications", issued 1995 


  77. ^ Sam Kean (2010). The Disappearing Spoon: And Other True Tales of Madness, Love, and the History of the World from the Periodic Table of the Elements. Boston: Little, Brown and Company. ISBN 978-0-316-05164-4.


  78. ^ "Gallium 203319".


  79. ^ "Msds - 203319".


  80. ^ Ivanoff, C. S.; Ivanoff, A. E.; Hottel, T. L. (February 2012). "Gallium poisoning: a rare case report". Food Chem. Toxicol. 50 (2): 212–5. doi:10.1016/j.fct.2011.10.041. PMID 22024274.




Bibliography



  • Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 0-08-037941-9.


External links












  • Gallium at The Periodic Table of Videos (University of Nottingham)


  • Safety data sheet at acialloys.com

  • High-resolution photographs of molten gallium, gallium crystals and gallium ingots under Creative Commons licence

  • www.lenntech.com – textbook information regarding gallium

  • Environmental effects of gallium

  • Price development of gallium 1959–1998


  • Gallium : A Smart Metal United States Geological Survey

  • Technology produces hydrogen by adding water to an alloy of aluminum and gallium

  • Thermal conductivity


  • Physical and thermodynamical properties of liquid gallium (doc pdf)











Popular posts from this blog

Italian cuisine

Bulgarian cuisine

Carrot