Atmospheric radiative transfer codes




An Atmospheric radiative transfer model, code, or simulator calculates radiative transfer of electromagnetic radiation through a planetary atmosphere, such as the Earth's.




Contents






  • 1 Methods


  • 2 Applications


  • 3 Table of models


    • 3.1 Molecular absorption databases




  • 4 See also


  • 5 References


  • 6 External links





Methods


At the core of a radiative transfer model lies the radiative transfer equation that is numerically solved using a solver such as a discrete ordinate method or a Monte Carlo method. The radiative transfer equation is a monochromatic equation to calculate radiance in a single layer of the Earth's atmosphere. To calculate the radiance for a spectral region with a finite width (e.g., to estimate the Earth's energy budget or simulate an instrument response), one has to integrate this over a band of frequencies (or wavelengths). The most exact way to do this is to loop through the frequencies of interest, and for each frequency, calculate the radiance at this frequency. For this, one needs to calculate the contribution of each spectral line for all molecules in the atmospheric layer; this is called a line-by-line calculation.
For an instrument response, this is then convolved with the spectral response of the instrument. A faster but more approximate method is a band transmission. Here, the transmission in a region in a band is characterised by a set of pre-calculated coefficients (depending on temperature and other parameters). In addition, models may consider scattering from molecules or particles, as well as polarisation; however, not all models do so.



Applications


Radiative transfer codes are used in broad range of applications. They are commonly used as forward models for the retrieval of geophysical parameters (such as temperature or humidity). Radiative transfer models are also used to optimize solar photovoltaic systems for renewable energy generation.[1] Another common field of application is in a weather or climate model, where the radiative forcing is calculated for greenhouse gases, aerosols, or clouds. In such applications, radiative transfer codes are often called radiation parameterization. In these applications, the radiative transfer codes are used in forward sense, i.e. on the basis of known properties of the atmosphere, one calculates heating rates, radiative fluxes, and radiances.


There are efforts for intercomparison of radiation codes. One such project was ICRCCM (Intercomparison of Radiation Codes in Climate Models) effort that spanned the late 1980s - early 2000s. The more current (2011) project, Continual Intercomparison of Radiation Codes, emphasises also using observations to define intercomparison cases.
[2]



Table of models

























































































































































































































































































































































































































































































































































































































































































Name

Website

References

UV

Visible


Near IR


Thermal IR

mm/sub-mm

Microwave


line-by-line/band

Scattering

Polarised

Geometry

License

Notes


4A/OP

[1]

Scott and Chédin (1981)

[3]


No
Yes
Yes
Yes
No
No
line-by-line
Yes
Yes

freeware


6S/6SV1

[2]

Kotchenova et al. (1997)

[4]


No
Yes
Yes
No
No
No
band
?
Yes


non-Lambertian surface

ARTS

[3]

Eriksson et al. (2011)

[5]


No
No
No
Yes
Yes
Yes
line-by-line
Yes
Yes
spherical 1D, 2D, 3D

GPL


BTRAM

[4]

Chapman et al. (2009)

[6]


No
Yes
Yes
Yes
Yes
Yes
line-by-line
No
No
1D,plane-parallel
proprietary commercial


COART

[5]

Jin et al. (2006)

[7]


Yes
Yes
Yes
Yes
No
No

Yes
No
plane-parallel
free


CRM

[6]

No
Yes
Yes
Yes
No
No
band
Yes
No

freely available
Part of NCAR Community Climate Model

CRTM

[7]

No
Yes
Yes
Yes
No
Yes
band
Yes
?




DART radiative transfer model

[8]

Gastellu-Etchegorry et al. (1996)

[8]


No
Yes
Yes
Yes
No
No
band
Yes
?
spherical 1D, 2D, 3D
free for research with license
non-Lambertian surface, landscape creation and import

DISORT

[9]

Stamnes et al. (1988)[9]

Lin et al. (2015)[10]


Yes
Yes
Yes
Yes
Yes

radar

Yes
No
plane-parallel or pseudo-spherical (v4.0)
free with restrictions
discrete ordinate, used by others

FARMS

[10]

Xie et al. (2016)

[11]


λ>0.2 µm
Yes
Yes
No
No
No
band
Yes
No
plane-parallel
free
Rapidly simulating downwelling solar radiation at land surface for solar energy and climate research

Fu-Liou

[11]

Fu and Liou (1993)

[12]


No
Yes
Yes
?
No
No

Yes
?
plane-parallel
usage online, source code available
web interface online at [13]

FUTBOLIN


Martin-Torres (2005)

[14]


λ>0.3 µm
Yes
Yes
Yes
λ<1000 µm
No
line-by-line
Yes
?
spherical or plane-parallel

handles line-mixing, continuum absorption and NLTE

GENLN2

[12]

Edwards (1992)

[15]


?
?
?
?
?
?
line-by-line
?
?




KARINE

[13]

Eymet (2005)

[16]


No
No
Yes
No
No

?
?
plane-parallel
GPL


KCARTA

[14]

?
?
Yes
Yes
?
?
line-by-line
Yes
?
plane-parallel
freely available

AIRS reference model

KOPRA

[15]

No
No
No
Yes
No
No

?
?




LBLRTM

[16]

Clough et al. (2005)

[17]


Yes
Yes
Yes
Yes
Yes
Yes
line-by-line
?
?




LEEDR

[17]

Fiorino et al. (2014)

[18]


λ>0.2 µm
Yes
Yes
Yes
Yes
Yes
band or line-by-line
Yes
?
spherical
US government software
extended solar & lunar sources;

single & multiple scattering



LinePak

[18]

Gordley et al. (1994)

[19]


Yes
Yes
Yes
Yes
Yes
Yes
line-by-line
No
No
spherical (Earth and Mars), plane-parallel
freely available with restrictions
web interface, SpectralCalc

libRadtran

[19]

Mayer and Kylling (2005)

[20]


Yes
Yes
Yes
Yes
No
No
band or line-by-line
Yes
Yes
plane-parallel or pseudo-spherical

GPL


MATISSE

[20]

Caillault et al. (2007)

[21]


No
Yes
Yes
Yes
No
No
band
Yes
?

proprietary freeware


MCARaTS
[22]










GPL
3-D Monte Carlo

MODTRAN

[21]

Berk et al. (1998)

[23]



ṽ<50,000 cm−1
Yes
Yes
Yes
Yes
Yes
band or line-by-line
Yes
?

proprietary commercial
solar and lunar source, uses DISORT

MOSART

[22]

Cornette (2006)

[24]


λ>0.2 µm
Yes
Yes
Yes
Yes
Yes
band
Yes
No

freely available


PUMAS

[23]

Yes
Yes
Yes
Yes
Yes
Yes
Line-by-line and correlated-k
Yes
Yes
plane-parallel and pseudo-spherical
Free/online tool


RFM

[24]

No
No
No
Yes
No
No
line-by-line
?
?

available on request

MIPAS reference model based on GENLN2

RRTM/RRTMG

[25]

Mlawer, et al. (1997)

[25]



ṽ<50,000 cm−1
Yes
Yes
Yes
Yes

ṽ>10 cm−1

?
?

free of charge
uses DISORT

RTMOM

[26][dead link]

λ>0.25 µm
Yes
Yes
λ<15 µm
No
No
line-by-line
Yes
?
plane-parallel
freeware


RTTOV

[27]

Saunders et al. (1999)

[26]


λ>0.4 µm
Yes
Yes
Yes
Yes
Yes
band
Yes
?

available on request

SASKTRAN
[27] Bourassa et al.

(2008)[28]


Zawada et al.


(2015)[29]


Yes
Yes
Yes
No
No
No
line-by-line
Yes
Yes
spherical 1D, 2D, 3D, plane-parallel
available on request
discrete and Monte Carlo options

SBDART

[28]

Ricchiazzi et al. (1998)

[30]


Yes
Yes
Yes
?
No
No

Yes
?
plane-parallel

uses DISORT

SCIATRAN

[29]

Rozanov et al. (2005)

,[31]


Rozanov et al. (2014)

[32]


Yes
Yes
Yes
No
No
No
band or line-by-line
Yes
Yes
plane-parallel or pseudo-spherical or spherical



SHARM


Lyapustin (2002)

[33]


No
Yes
Yes
No
No
No

Yes
?




SHDOM

[30]

Evans (2006)

[34]


?
?
Yes
Yes
?
?

Yes
?




SMART-G

[31]

Ramon et al. (2019)

[35]


Yes
Yes
Yes
No
No
No
band or line-by-line
Yes
Yes
plane-parallel or spherical
free for non-commercial purposes
Monte-Carlo code parallelized by GPU (CUDA). Atmosphere or/and ocean options

Streamer, Fluxnet

[32][36]

Key and Schweiger (1998)

[37]


No
No
λ>0.6 mm
λ<15 mm
No
No
band
Yes
?
plane-parallel

Fluxnet is fast version of STREAMER using neural nets

XRTM

[33]

Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
plane-parallel and pseudo-spherical
GPL

Name
Website
References
UV
VIS
Near IR
Thermal IR
Microwave
mm/sub-mm
line-by-line/band
Scattering
Polarised
Geometry
License
Notes


Molecular absorption databases


For a line-by-line calculation, one needs characteristics of the spectral lines, such as the line centre, the intensity, the lower-state energy, the line width and the shape.


















Name Author Description

HITRAN[38]
Rothman et al. (1987, 1992, 1998, 2003, 2005, 2009, 2013, 2017)
HITRAN is a compilation of molecular spectroscopic parameters that a variety of computer codes use to predict and simulate the transmission and emission of light in the atmosphere. The original version was created at the Air Force Cambridge Research Laboratories (1960's). The database is maintained and developed at the Harvard-Smithsonian Center for Astrophysics in Cambridge MA, USA.

GEISA[39]
Jacquinet-Husson et al. (1999, 2005, 2008)
GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) is a computer-accessible spectroscopic database, designed to facilitate accurate forward radiative transfer calculations using a line-by-line and layer-by-layer approach. It was started in 1974 at Laboratoire de Météorologie Dynamique (LMD/IPSL) in France. GEISA is maintained by the ARA group at LMD (Ecole Polytechnique) for its scientific part and by the ETHER group (CNRS Centre National de la Recherche Scientifique-France) at IPSL (Institut Pierre Simon Laplace) for its technical part. Currently, GEISA is involved in activities related to the assessment of the capabilities of IASI (Infrared Atmospheric Sounding Interferometer on board of the METOP European satellite) through the GEISA/IASI database derived from GEISA.


See also



  • Discrete dipole approximation codes

  • Codes for electromagnetic scattering by cylinders

  • Codes for electromagnetic scattering by spheres

  • Optical properties of water and ice



References


Footnotes




  1. ^ R.W. Andrews, J.M. Pearce, The effect of spectral albedo on amorphous silicon and crystalline silicon solar photovoltaic device performance, Solar Energy, 91,233–241 (2013). DOI:10.1016/j.solener.2013.01.030 open access


  2. ^ Continual Intercomparison of Radiation Codes


  3. ^
    Scott, N. A.; Chedin, A. (1981). "A fast line-by- line method for atmospheric absorption computations: The Automatized Atmospheric Absorption Atlas". J. Appl. Meteorol. 20 (7): 802–812. Bibcode:1981JApMe..20..802S. doi:10.1175/1520-0450(1981)020<0802:AFLBLM>2.0.CO;2..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}



  4. ^
    Kotchenova, S. Y.; Vermote, E. F.; Matarrese, R; Klemm, F. J. (2006). "Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path Radiance". Applied Optics. 45 (26): 6762–6774. Bibcode:2006ApOpt..45.6762K. CiteSeerX 10.1.1.488.9804. doi:10.1364/AO.45.006762. PMID 16926910.



  5. ^
    Eriksson, P.; Buehler, S. A.; Davis, C.P.; Emde, C.; Lemke, O. (2011). "ARTS, the atmospheric radiative transfer simulator, Version 2" (PDF). Journal of Quantitative Spectroscopy and Radiative Transfer. 112 (10): 1551–1558. Bibcode:2011JQSRT.112.1551E. doi:10.1016/j.jqsrt.2011.03.001. Retrieved 2016-11-02.



  6. ^
    Chapman, I. M.; Naylor, D. A.; Gom, B. G.; Querel, R. R.; Davis-Imhof, P. (2009). "BTRAM: An Interactive Atmospheric Radiative Transfer Model". The 30th Canadian Symposium on Remote Sensing. 30: 22–25.



  7. ^
    Jin, Z.; Charlock, T.P.; Rutledge, K.; Stamnes, K.; Wang, Y. (2006). "An analytical solution of radiative transfer in the coupled atmosphere-ocean system with rough surface". Appl. Opt. 45 (28): 7443–7455. Bibcode:2006ApOpt..45.7443S. doi:10.1364/AO.45.007443.



  8. ^
    Gastellu-Etchegorry, JP; Demarez, V; Pinel, V; Zagolski, F (1996). "Modelling radiative transfer in heterogeneous 3-D vegetation canopies". Rem. Sens. Env. 58 (2): 131–156. Bibcode:1996RSEnv..58..131G. doi:10.1016/0034-4257(95)00253-7.



  9. ^
    Stamnes, Knut; Tsay, S. C.; Wiscombe, W.; Jayaweera, Kolf (1988). "Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media". Appl. Opt. 27 (12): 2502–2509. Bibcode:1988ApOpt..27.2502S. doi:10.1364/AO.27.002502. PMID 20531783.



  10. ^
    Lin, Zhenyi; Stamnes, S.; Jin, Z.; Laszlo, I.; Tsay, S. C.; Wiscombe, W. (2015). "Improved discrete ordinate solutions in the presence of an anisotropically reflecting lower boundary: Upgrades of the DISORT computational tool". Journal of Quantitative Spectroscopy and Radiative Transfer. 157 (12): 119–134. Bibcode:2015JQSRT.157..119L. doi:10.1016/j.jqsrt.2015.02.014.



  11. ^
    Xie, Y.; Sengupta, M.; Dudhia, J. (2016). "A Fast All-sky Radiation Model for Solar applications (FARMS): Algorithm and performance evaluation". Solar Energy. 135: 435–445. Bibcode:2016SoEn..135..435X. doi:10.1016/j.solener.2016.06.003.



  12. ^
    Fu, Q.; Liou, K.-N (1993). "Parameterization of the radiative properties of cirrus clouds". J. Atmos. Sci. 50 (13): 2008–2025. Bibcode:1993JAtS...50.2008F. doi:10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.



  13. ^ "Archived copy". Archived from the original on 2010-05-27. Retrieved 2010-07-07.CS1 maint: Archived copy as title (link)


  14. ^
    Martin-Torres, F. J.; Kutepov, A.; Dudhia, A.; Gusev, O.; Feofilov, A.G. (2003). "Accurate and fast computation of the radiative transfer absorption rates for the infrared bands in the atmosphere of Titan". Geophysical Research Abstracts: 7735. Bibcode:2003EAEJA.....7735M.



  15. ^ Edwards, D. P. (1992), GENLN2: A general line-by-line atmospheric transmittance and radiance model, Version 3.0 description and users guide, NCAR/TN-367-STR, National Center for Atmospheric Research, Boulder, Co.


  16. ^ KARINE: a tool for infrared radiative transfer analysis in planetary atmospheres par V. Eymet. Note technique interne, Laboratoire d'Energétique, 2005.


  17. ^
    Clough, S. A.; Shephard, M. W.; Mlawer, E. J.; Delamere, J. S.; Iacono, M. J.; Cady-Pereira, K.; Boukabara, S.; Brown, P. D. (2005). "Atmospheric radiative transfer modeling: a summary of the AER codes". J. Quant. Spectrosc. Radiat. Transfer. 91 (2): 233–244. Bibcode:2005JQSRT..91..233C. doi:10.1016/j.jqsrt.2004.05.058.



  18. ^
    Fiorino, S. T.; Randall, R. M.; Via, M. F.; Burley, J. L. (2014). "Validation of a UV-to-RF High-Spectral-Resolution Atmospheric Boundary Layer Characterization Tool". J. Appl. Meteorol. Climatol. 53 (1): 136–156. Bibcode:2014JApMC..53..136F. doi:10.1175/JAMC-D-13-036.1.



  19. ^
    Gordley, L. L.; Marshall, B. T. (1994). "LINEPAK: Algorithm for Modeling Spectral Transmittance and Radiance". J. Quant. Spectrosc. Radiat. Transfer. 52 (5): 563–580. Bibcode:1994JQSRT..52..563C. CiteSeerX 10.1.1.371.5401. doi:10.1016/0022-4073(94)90025-6.



  20. ^
    Mayer, B.; Kylling, A. (2005). "Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use". Atmospheric Chemistry and Physics. 5 (7): 1855–1877. doi:10.5194/acp-5-1855-2005.



  21. ^
    Caillaut, K.; Fauqueux, S.; Bourlier, C.; Simoneau, P.; Labarre, L. (2007). "Multiresolution optical characteristics of rough sea surface in the infrared". Applied Optics. 46 (22): 5471–5481. Bibcode:2007ApOpt..46.5471C. doi:10.1364/AO.46.005471. PMID 17676164.



  22. ^ "MCARaTS". sites.google.com. Retrieved 2016-04-01.


  23. ^
    Berk, A.; Bernstein, L. S.; Anderson, G. P.; Acharya, P. K.; Robertson, D. C.; Chetwynd, J. H.; Adler-Golden, S. M. (1998). "MODTRAN cloud and multiple scattering upgrades with application to AVIRIS". Remote Sensing of Environment. 65 (3): 367–375. Bibcode:1998RSEnv..65..367B. doi:10.1016/S0034-4257(98)00045-5.



  24. ^
    Cornette, William M. (2006). "Moderate Spectral Atmospheric Radiance and Transmittance (MOSART) Computer Code Version 2.00., Lexington, MA (2006)". Proc. IEEE-GRSS/AFRL Atmospheric Transmission Modeling Conference, Lexington MA.



  25. ^
    Mlawer, E. J.; Taubman, S. J.; Brown, P. D.; Iacono, M. J.; Claugh, S. A. (1997). "RRTM, a validated correlated-k model for the longwave". J. Geophys. Res. 102 (16): 663–682. Bibcode:1997JGR...10216663M. doi:10.1029/97JD00237.



  26. ^
    Saunders, R. W.; Matricardi, M.; Brunel, P. (1999). "An Improved Fast Radiative Transfer Model for Assimilation of Satellite Radiance Observations". Quart. J. Royal Meteorol. Soc. 125 (556): 1407–1425. Bibcode:1999QJRMS.125.1407S. doi:10.1256/smsqj.55614.



  27. ^ "Welcome to SASKTRAN's documentation! — SASKTRAN 0.1.3 documentation". arg.usask.ca. Retrieved 2018-04-11.


  28. ^ Bourassa, A.E.; Degenstein, D.A.; Llewellyn, E.J. (2008). "SASKTRAN: A spherical geometry radiative transfer code for efficient estimation of limb scattered sunlight". Journal of Quantitative Spectroscopy and Radiative Transfer. 109 (1): 52–73. Bibcode:2008JQSRT.109...52B. doi:10.1016/j.jqsrt.2007.07.007.


  29. ^ Zawada, D. J.; Dueck, S. R.; Rieger, L. A.; Bourassa, A. E.; Lloyd, N. D.; Degenstein, D. A. (2015-06-26). "High-resolution and Monte Carlo additions to the SASKTRAN radiative transfer model". Atmos. Meas. Tech. 8 (6): 2609–2623. Bibcode:2015AMT.....8.2609Z. doi:10.5194/amt-8-2609-2015. ISSN 1867-8548.


  30. ^ Ricchiazzi, P.; Yang, S.; Gautier, C.; Sowle, D. (1998). "SBDART: A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth's Atmosphere". Bull. Am. Meteorol. Soc. 79 (10): 2101–2114. Bibcode:1998BAMS...79.2101R. doi:10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2.


  31. ^ Rozanov, A.; Rozanov, V.; Buchwitz, M.; Kokhanovsky, A.; Burrows, J. P. (2005). "SCIATRAN 2.0-A new radiative transfer model for geophysical applications in the 175-2400 nm spectral region". Advances in Space Research. 36 (5): 1015–1019. Bibcode:2005AdSpR..36.1015R. doi:10.1016/j.asr.2005.03.012.


  32. ^ Rozanov, V.; Rozanov, A.; Kokhanovsky, A.; Burrows, J. P. (2014). "Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN". Journal of Quantitative Spectroscopy and Radiative Transfer. 133: 13–71. Bibcode:2014JQSRT.133...13R. doi:10.1016/j.jqsrt.2013.07.004.


  33. ^
    Lyapustin, A. (2002). "Radiative transfer code SHARM-3D for radiance simulations over a non-Lambertian nonhomogeneous surface: intercomparison study". Applied Optics. 41 (27): 5607–5615. Bibcode:2002ApOpt..41.5607L. doi:10.1364/AO.41.005607. PMID 12269559.



  34. ^
    Evans, K. F. (1998). "The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer". Journal of the Atmospheric Sciences. 55 (3): 429–446. Bibcode:1998JAtS...55..429E. CiteSeerX 10.1.1.555.9038. doi:10.1175/1520-0469(1998)055<0429:TSHDOM>2.0.CO;2.



  35. ^
    Ramon, D. (2019). "Modeling polarized radiative transfer in the ocean-atmosphere system with the GPU-accelerated SMART-G Monte Carlo code". Journal of Quantitative Spectroscopy and Radiative Transfer. 222-223: 89–107. doi:10.1016/j.jqsrt.2018.10.017.



  36. ^ FluxNet


  37. ^
    Key, J.; Schweiger, A. J. (1998). "Tools for atmospheric radiative transfer: Streamer and FluxNet". Computers & Geosciences. 24 (5): 443–451. Bibcode:1998CG.....24..443K. doi:10.1016/S0098-3004(97)00130-1.



  38. ^ HITRAN Site


  39. ^ GEISA Site



General


  • Bohren, Craig F. and Eugene E. Clothiaux, Fundamentals of atmospheric radiation: an introduction with 400 problems, Weinheim : Wiley-VCH, 2006, 472 p.,
    ISBN 3-527-40503-8.

  • Goody, R. M. and Y. L. Yung, Atmospheric Radiation: Theoretical Basis. Oxford University Press, 1996 (Second Edition), 534 pages,
    ISBN 978-0-19-510291-8.

  • Liou, Kuo-Nan, An introduction to atmospheric radiation, Amsterdam ; Boston : Academic Press, 2002, 583 p., International geophysics series, v.84,
    ISBN 0-12-451451-0.

  • Mobley, Curtis D., Light and water: radiative transfer in natural waters; based in part on collaborations with Rudolph W. Preisendorfer, San Diego, Academic Press, 1994, 592 p.,
    ISBN 0-12-502750-8

  • Petty, Grant W, A first course in atmospheric radiation (2nd Ed.), Madison, Wisconsin : Sundog Pub., 2006, 472 p.,
    ISBN 0-9729033-1-3

  • Preisendorfer, Rudolph W., Hydrologic optics, Honolulu, Hawaii : U.S. Dept. of Commerce, National Oceanic & Atmospheric Administration, Environmental Research Laboratories, Pacific Marine Environmental Laboratory, 1976, 6 volumes.

  • Stephens, Graeme L., Remote sensing of the lower atmosphere : an introduction, New York, Oxford University Press, 1994, 523 p. 
    ISBN 0-19-508188-9.

  • Thomas, Gary E. and Knut Stamnes, Radiative transfer in the atmosphere and ocean, Cambridge, New York, Cambridge University Press, 1999, 517 p.,
    ISBN 0-521-40124-0.

  • Zdunkowski, W., T. Trautmann, A. Bott, Radiation in the Atmosphere. Cambridge University Press, 2007, 496 pages,
    ISBN 978-0-521-87107-5



External links


  • ITWC for radiative transfer



Popular posts from this blog

Italian cuisine

Bulgarian cuisine

Carrot