Hydroiodic acid
















































































































Hydroiodic acid





Space-filling model of hydrogen iodide


Space-filling model of water







The iodide anion


Space-filling model of the hydronium cation


Names
Other names
Hydronium iodide

Identifiers

CAS Number



  • 10034-85-2 ☑Y


3D model (JSmol)


  • Interactive image


ChEBI


  • CHEBI:47266 ☑Y


ChemSpider


  • 255 ☑Y


EC Number
233-109-9


PubChem CID


  • 260


RTECS number
MW3760000

UNII


  • 3IY7CNP8XJ ☒N





Properties

Chemical formula

HI(aq)

Molar mass
127.91
Appearance
colorless liquid

Odor
acrid

Density
1.70 g/mL, azeotrope
(57% HI by weight)

Boiling point
127 °C (261 °F; 400 K) 1.03 bar, azeotrope

Solubility in water

Aqueous solution
Hazards


EU classification (DSD) (outdated)

Corrosive (C)

R-phrases (outdated)

R34

S-phrases (outdated)

(S1/2), S26, S45

NFPA 704



Flammability code 0: Will not burn. E.g., water
Health code 3: Short exposure could cause serious temporary or residual injury. E.g., chlorine gas
Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen
Special hazard ACID: Acid.
NFPA 704 four-colored diamond


0


3


0

ACID



Flash point
Non-flammable
Related compounds

Other anions


Hydrofluoric acid
Hydrochloric acid
Hydrobromic acid

Related compounds


Hydrogen iodide

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).


Infobox references



Hydroiodic acid (or hydriodic acid) is a highly acidic aqueous solution of hydrogen iodide (HI)
(concentrated solution usually 48 - 57% HI). It is the second strongest hydrohalic acid, after hydroastatic acid. Hydroiodic acid is a commonly used chemical reagent and is one of the strong acids that ionize completely in an aqueous solution. Concentrated hydroiodic acid has a pH of less than 0.[citation needed]




Contents






  • 1 Reactions


    • 1.1 Cativa process


    • 1.2 Illicit uses




  • 2 References


  • 3 External links





Reactions


Hydroiodic acid readily reacts with oxygen in air, contributing to the deep colours associated with old samples;



4 HI + O2 → 2 H
2
O
+ 2 I2

HI + I2 → HI3


Like other halogens, hydroiodic acid will perform addition reactions with unsaturated hydrocarbons such as alkenes.



Cativa process


The Cativa process is a major end use of hydroiodic acid, which serves as a co-catalyst for the production of acetic acid by the carbonylation of methanol.[1][2]


The catalytic cycle of the Cativa process


Illicit uses


Hydroiodic acid is listed as a U.S. Federal DEA List I Chemical, owing to its use as a reducing agent related to the production of methamphetamine from pseudoephedrine (recovered from nasal decongestant pills).[3] This reaction is stereospecific, producing only (d)-methamphetamine.



References





  1. ^ Jones, J. H. (2000). "The CativaTM Process for the Manufacture of Acetic Acid" (PDF). Platinum Metals Rev. 44 (3): 94–105..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ Sunley, G. J.; Watson, D. J. (2000). "High productivity methanol carbonylation catalysis using iridium - The CativaTM process for the manufacture of acetic acid". Catalysis Today. 58 (4): 293–307. doi:10.1016/S0920-5861(00)00263-7.


  3. ^ Skinner, Harry F. "Methamphetamine Synthesis via HI/Red Phosphorus Reduction of Ephedrine". Forensic Science International, 48 128-134 (1990)




External links



  • International Chemical Safety Card 1326

  • European Chemicals Bureau




Popular posts from this blog

Shashamane

Carrot

Deprivation index