Rhombicosidodecahedron
































































Rhombicosidodecahedron

Rhombicosidodecahedron.jpg
(Click here for rotating model)
Type
Archimedean solid
Uniform polyhedron
Elements
F = 62, E = 120, V = 60 (χ = 2)
Faces by sides 20{3}+30{4}+12{5}
Conway notation eD or aaD
Schläfli symbols rr{5,3} or r{53}{displaystyle r{begin{Bmatrix}5\3end{Bmatrix}}}r{begin{Bmatrix}5\3end{Bmatrix}}
t0,2{5,3}
Wythoff symbol 3 5 | 2
Coxeter diagram
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png
Symmetry group
Ih, H3, [5,3], (*532), order 120
Rotation group
I, [5,3]+, (532), order 60
Dihedral angle 3-4: 159°05′41″ (159.09°)
4-5: 148°16′57″ (148.28°)
References
U27, C30, W14
Properties Semiregular convex

Polyhedron small rhombi 12-20 max.png
Colored faces

Small rhombicosidodecahedron vertfig.png
3.4.5.4
(Vertex figure)

Polyhedron small rhombi 12-20 dual max.png
Deltoidal hexecontahedron
(dual polyhedron)

Polyhedron small rhombi 12-20 net.svg
Net

In geometry, the rhombicosidodecahedron, is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces.


It has 20 regular triangular faces, 30 square faces, 12 regular pentagonal faces, 60 vertices, and 120 edges.




Contents






  • 1 Names


  • 2 Geometric relations


  • 3 Cartesian coordinates


  • 4 Orthogonal projections


  • 5 Spherical tiling


  • 6 Related polyhedra


    • 6.1 Symmetry mutations


    • 6.2 Johnson solids


    • 6.3 Vertex arrangement




  • 7 Rhombicosidodecahedral graph


  • 8 See also


  • 9 Notes


  • 10 References


  • 11 External links





Names


.mw-parser-output .tmulti .thumbinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{text-align:left;background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;text-align:center}.mw-parser-output .tmulti .thumbcaption{text-align:center}}





Johannes Kepler in Harmonices Mundi (1618) named this polyhedron a rhombicosidodecahedron, being short for truncated icosidodecahedral rhombus, with icosidodecahedral rhombus being his name for a rhombic triacontahedron.[1] There are different truncations of a rhombic triacontahedron into a topological rhombicosidodecahedron: Prominently its rectification (left), the one that creates the uniform solid (center), and the core of the compound with its dual (right).


It can also be called an expanded or cantellated dodecahedron or icosahedron, from truncation operations on either uniform polyhedron.



Geometric relations


If you expand an icosahedron by moving the faces away from the origin the right amount, without changing the orientation or size of the faces, and do the same to its dual dodecahedron, and patch the square holes in the result, you get a rhombicosidodecahedron. Therefore, it has the same number of triangles as an icosahedron and the same number of pentagons as a dodecahedron, with a square for each edge of either.


The rhombicosidodecahedron shares the vertex arrangement with the small stellated truncated dodecahedron, and with the uniform compounds of six or twelve pentagrammic prisms.


The Zometool kits for making geodesic domes and other polyhedra use slotted balls as connectors. The balls are "expanded" rhombicosidodecahedra, with the squares replaced by rectangles. The expansion is chosen so that the resulting rectangles are golden rectangles.


Twelve of the 92 Johnson solids are derived from the rhombicosidodecahedron, four of them by rotation of one or more pentagonal cupolae: the gyrate, parabigyrate, metabigyrate, and trigyrate rhombicosidodecahedron. Eight more can be constructed by removing up to three cupolae, sometimes also rotating one or more of the other cupolae.



Cartesian coordinates


Cartesian coordinates for the vertices of a rhombicosidodecahedron with an edge length of 2 centered at the origin are all even permutations of:[2]



(±1, ±1, ±φ3),

φ2, ±φ, ±2φ),

(±(2+φ), 0, ±φ2),


where φ = 1 + 5/2 is the golden ratio. Therefore, the circumradius of this rhombicosidodecahedron is the common distance of these points from the origin, namely φ6+2 = 8φ+7 for edge length 2. For unit edge length, R must be halved, giving



R = 8φ+7/2 = 11+45/2 ≈ 2.233.


Orthogonal projections






Orthogonal projections in Geometria (1543) by Augustin Hirschvogel


The rhombicosidodecahedron has six special orthogonal projections, centered, on a vertex, on two types of edges, and three types of faces: triangles, squares, and pentagons. The last two correspond to the A2 and H2Coxeter planes.



















































Orthogonal projections
Centered by
Vertex
Edge
3-4
Edge
5-4
Face
Square
Face
Triangle
Face
Pentagon
Solid




Polyhedron small rhombi 12-20 from blue max.png

Polyhedron small rhombi 12-20 from yellow max.png

Polyhedron small rhombi 12-20 from red max.png
Wireframe

Dodecahedron t02 v.png

Dodecahedron t02 e34.png

Dodecahedron t02 e45.png

Dodecahedron t02 f4.png

Dodecahedron t02 A2.png

Dodecahedron t02 H3.png
Projective
symmetry
[2]
[2]
[2]
[2]
[6]
[10]
Dual
image

Dual dodecahedron t02 v.png

Dual dodecahedron t02 e34.png

Dual dodecahedron t02 e45.png

Dual dodecahedron t02 f4.png

Dual dodecahedron t02 A2.png

Dual dodecahedron t02 H3.png


Spherical tiling


The rhombicosidodecahedron can also be represented as a spherical tiling, and projected onto the plane via a stereographic projection. This projection is conformal, preserving angles but not areas or lengths. Straight lines on the sphere are projected as circular arcs on the plane.














Uniform tiling 532-t02.png

Rhombicosidodecahedron stereographic projection pentagon'.png
Pentagon-centered

Rhombicosidodecahedron stereographic projection triangle.png
Triangle-centered

Rhombicosidodecahedron stereographic projection square.png
Square-centered

Orthographic projection

Stereographic projections


Related polyhedra





Expansion of either a dodecahedron or an icosahedron creates a rhombicosidodecahedron.




A version with golden rectangles is used as vertex element of the construction set Zometool.[3]





























































Symmetry mutations


This polyhedron is topologically related as a part of a sequence of cantellated polyhedra with vertex figure (3.4.n.4), which continues as tilings of the hyperbolic plane. These vertex-transitive figures have (*n32) reflectional symmetry.













































Johnson solids


There are 13 related Johnson solids, 5 by diminishment, and 8 including gyrations:











Diminished

J5
Pentagonal cupola.png

76
Diminished rhombicosidodecahedron.png

80
Parabidiminished rhombicosidodecahedron.png

81
Metabidiminished rhombicosidodecahedron.png

83
Tridiminished rhombicosidodecahedron.png

















Gyrated and/or diminished

72
Gyrate rhombicosidodecahedron.png

73
Parabigyrate rhombicosidodecahedron.png

74
Metabigyrate rhombicosidodecahedron.png

75
Trigyrate rhombicosidodecahedron.png

77
Paragyrate diminished rhombicosidodecahedron.png

78
Metagyrate diminished rhombicosidodecahedron.png

79
Bigyrate diminished rhombicosidodecahedron.png

82
Gyrate bidiminished rhombicosidodecahedron.png


Vertex arrangement


The rhombicosidodecahedron shares its vertex arrangement with three nonconvex uniform polyhedra: the small stellated truncated dodecahedron, the small dodecicosidodecahedron (having the triangular and pentagonal faces in common), and the small rhombidodecahedron (having the square faces in common).


It also shares its vertex arrangement with the uniform compounds of six or twelve pentagrammic prisms.














Small rhombicosidodecahedron.png
Rhombicosidodecahedron

Small dodecicosidodecahedron.png
Small dodecicosidodecahedron

Small rhombidodecahedron.png
Small rhombidodecahedron

Small stellated truncated dodecahedron.png
Small stellated truncated dodecahedron

UC36-6 pentagrammic prisms.png
Compound of six pentagrammic prisms

UC37-12 pentagrammic prisms.png
Compound of twelve pentagrammic prisms


Rhombicosidodecahedral graph






















Rhombicosidodecahedral graph

Rhombicosidodecahedral graph.png
Pentagon centered Schlegel diagram

Vertices 60
Edges 120
Automorphisms 120
Properties
Quartic graph, Hamiltonian, regular
Table of graphs and parameters

In the mathematical field of graph theory, a rhombicosidodecahedral graph is the graph of vertices and edges of the rhombicosidodecahedron, one of the Archimedean solids. It has 60 vertices and 120 edges, and is a quartic graph Archimedean graph.[4]




Square centered Schlegel diagram




See also


  • Truncated rhombicosidodecahedron


Notes





  1. ^ Harmonies Of The World by Johannes Kepler, Translated into English with an introduction and notes by E. J. Aiton, A. M. Duncan, "J. V. Field, 1997, .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
    ISBN 0-87169-209-0 (page 123)



  2. ^ Weisstein, Eric W. "Icosahedral group". MathWorld.


  3. ^ Weisstein, Eric W. "Zome". MathWorld.


  4. ^ Read, R. C.; Wilson, R. J. (1998), An Atlas of Graphs, Oxford University Press, p. 269




References




  • Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. ISBN 0-486-23729-X. (Section 3-9)


  • Cromwell, P. (1997). Polyhedra. United Kingdom: Cambridge. pp. 79–86 Archimedean solids. ISBN 0-521-55432-2.


  • The Big Bang Theory Series 8 Episode 2 - The Junior Professor Solution: features this solid as the answer to an impromptu science quiz the main four characters have in Leonard and Sheldon's apartment, and is also illustrated in Chuck Lorre's Vanity Card #461 at the end of that episode.



External links




  • Eric W. Weisstein, Small Rhombicosidodecahedron (Archimedean solid) at MathWorld.
    • Weisstein, Eric W. "Small rhombicosidodecahedron graph". MathWorld.



  • Klitzing, Richard. "3D convex uniform polyhedra x3o5x - srid".

  • Editable printable net of a Rhombicosidodecahedron with interactive 3D view

  • The Uniform Polyhedra


  • Virtual Reality Polyhedra The Encyclopedia of Polyhedra

  • The Rhombi-Cosi-Dodecahedron Website

  • The Rhombicosidodecahedron as a 3D puzzle









Popular posts from this blog

Italian cuisine

Bulgarian cuisine

Carrot