Extent of reaction
In physical chemistry, extent of reaction is a quantity that measures the extent in which the reaction proceeds. It is usually denoted by the Greek letter ξ. The extent of a reaction has units of amount (moles). It was introduced by the Belgian scientist Théophile de Donder.
Contents
1 Definition
2 Relations
3 Use
4 References
Definition
Consider the reaction
- A ⇌ B
Suppose an infinitesimal amount dξ of the reactant A changes into B. The change of the amount of A can be represented by the equation dnA = – dξ and the change of B is dnB = dξ.[1]
The extent of reaction is then defined as[2][3]
- dξ=dniνi{displaystyle dxi ={frac {dn_{i}}{nu _{i}}}}
where ni{displaystyle n_{i}} denotes the amount of the i-th reactant and νi{displaystyle nu _{i}} is the stoichiometric coefficient (or stoichiometric number using IUPAC nomenclature[4]) of the i-th reactant.
In other words, it is the amount of substance that is being changed in an equilibrium reaction.
Considering finite changes instead of infinitesimal changes, one can write the equation for the extent of a reaction as
- Δξ=Δniνi{displaystyle Delta xi ={frac {Delta n_{i}}{nu _{i}}}}
The extent of a reaction is defined as zero at the beginning of the reaction. Thus the change of ξ is the extent itself.
- ξ=Δniνi=nequilibrium−ninitialνi{displaystyle xi ={frac {Delta n_{i}}{nu _{i}}}={frac {n_{equilibrium}-n_{initial}}{nu _{i}}}}
Relations
The relation between the change in Gibbs reaction energy and Gibbs energy can be defined as the slope of the Gibbs energy plotted against the extent of reaction at constant pressure and temperature.[1]
- ΔrG=(∂G∂ξ)p,T{displaystyle Delta _{r}G=left({frac {partial G}{partial xi }}right)_{p,T}}
Analogously, the relation between the change in reaction enthalpy and enthalpy can be defined.[5]
- ΔrH=(∂H∂ξ)p,T{displaystyle Delta _{r}H=left({frac {partial H}{partial xi }}right)_{p,T}}
Use
The extent of reaction is a useful quantity in computations with equilibrium reactions. Let us consider the reaction
- 2A ⇌ B + 3 C
where the initial amounts are nA=2 mol,nB=1 mol,nC=0 mol{displaystyle n_{A}=2 {text{mol}},n_{B}=1 {text{mol}},n_{C}=0 {text{mol}}}, and the equilibrium amount of A is 0.5 mol. We can calculate the extent of reaction from its definition
- ξ=ΔnAνA=0.5 mol−2 mol−2=0.75 mol{displaystyle xi ={frac {Delta n_{A}}{nu _{A}}}={frac {0.5 {text{mol}}-2 {text{mol}}}{-2}}=0.75 {text{mol}}}
Do not forget that the stoichiometric number of reactants is negative. Now when we know the extent, we can rearrange the equation and calculate the equilibrium amounts of B and C.
- nequilibrium=ξνi+ninitial{displaystyle n_{equilibrium}=xi nu _{i}+n_{initial}}
- nB=0.75 mol×1+1 mol=1.75 mol{displaystyle n_{B}=0.75 {text{mol}}times 1+1 {text{mol}}=1.75 {text{mol}}}
- nC=0.75 mol×3+0 mol=2.25 mol{displaystyle n_{C}=0.75 {text{mol}}times 3+0 {text{mol}}=2.25 {text{mol}}}
References
^ ab Atkins, Peter; de Paula, Julio (2006). Physical chemistry (8 ed.). p. 201. ISBN 0-7167-8759-8..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
^ Lisý, Ján Mikuláš; Valko, Ladislav (1979). Príklady a úlohy z fyzikálnej chémie. p. 593.
^ Ulický, Ladislav (1983). Chemický náučný slovník. p. 313.
^ IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org (2006-) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins.
ISBN 0-9678550-9-8. doi:10.1351/goldbook. Entry: "stoichiometric number".
^ Lisý, Ján Mikuláš; Valko, Ladislav (1979). Príklady a úlohy z fyzikálnej chémie. p. 593.