Automorphic factor




In mathematics, an automorphic factor is a certain type of analytic function, defined on subgroups of SL(2,R), appearing in the theory of modular forms. The general case, for general groups, is reviewed in the article 'factor of automorphy'.



Definition


An automorphic factor of weight k is a function


ν×H→C{displaystyle nu :Gamma times mathbb {H} to mathbb {C} }{displaystyle nu :Gamma times mathbb {H} to mathbb {C} }

satisfying the four properties given below. Here, the notation H{displaystyle mathbb {H} }mathbb {H} and C{displaystyle mathbb {C} }mathbb {C} refer to the upper half-plane and the complex plane, respectively. The notation Γ{displaystyle Gamma }Gamma is a subgroup of SL(2,R), such as, for example, a Fuchsian group. An element γΓ{displaystyle gamma in Gamma }gamma in Gamma is a 2x2 matrix


γ=[abcd]{displaystyle gamma =left[{begin{matrix}a&b\c&dend{matrix}}right]}{displaystyle gamma =left[{begin{matrix}a&b\c&dend{matrix}}right]}

with a, b, c, d real numbers, satisfying adbc=1.


An automorphic factor must satisfy:


1. For a fixed γΓ{displaystyle gamma in Gamma }gamma in Gamma , the function ν,z){displaystyle nu (gamma ,z)}{displaystyle nu (gamma ,z)} is a holomorphic function of z∈H{displaystyle zin mathbb {H} }{displaystyle zin mathbb {H} }.


2. For all z∈H{displaystyle zin mathbb {H} }{displaystyle zin mathbb {H} } and γΓ{displaystyle gamma in Gamma }gamma in Gamma , one has
,z)|=|cz+d|k{displaystyle vert nu (gamma ,z)vert =vert cz+dvert ^{k}}{displaystyle vert nu (gamma ,z)vert =vert cz+dvert ^{k}}


for a fixed real number k.


3. For all z∈H{displaystyle zin mathbb {H} }{displaystyle zin mathbb {H} } and γΓ{displaystyle gamma ,delta in Gamma }{displaystyle gamma ,delta in Gamma }, one has

νδ,z)=νz)ν,z){displaystyle nu (gamma delta ,z)=nu (gamma ,delta z)nu (delta ,z)}{displaystyle nu (gamma delta ,z)=nu (gamma ,delta z)nu (delta ,z)}

Here, δz{displaystyle delta z}{displaystyle delta z} is the fractional linear transform of z{displaystyle z}z by δ{displaystyle delta }delta .

4.If I∈Γ{displaystyle -Iin Gamma }{displaystyle -Iin Gamma }, then for all z∈H{displaystyle zin mathbb {H} }{displaystyle zin mathbb {H} } and γΓ{displaystyle gamma in Gamma }gamma in Gamma , one has

ν(−γ,z)=ν,z){displaystyle nu (-gamma ,z)=nu (gamma ,z)}{displaystyle nu (-gamma ,z)=nu (gamma ,z)}

Here, I denotes the identity matrix.


Properties


Every automorphic factor may be written as


ν,z)=υ)(cz+d)k{displaystyle nu (gamma ,z)=upsilon (gamma )(cz+d)^{k}}{displaystyle nu (gamma ,z)=upsilon (gamma )(cz+d)^{k}}

with


)|=1{displaystyle vert upsilon (gamma )vert =1}{displaystyle vert upsilon (gamma )vert =1}

The function υS1{displaystyle upsilon :Gamma to S^{1}}{displaystyle upsilon :Gamma to S^{1}} is called a multiplier system. Clearly,



υ(I)=1{displaystyle upsilon (I)=1}{displaystyle upsilon (I)=1},

while, if I∈Γ{displaystyle -Iin Gamma }{displaystyle -Iin Gamma }, then


υ(−I)=e−k{displaystyle upsilon (-I)=e^{-ipi k}}{displaystyle upsilon (-I)=e^{-ipi k}}


References



  • Robert Rankin, Modular Forms and Functions, (1977) Cambridge University Press .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
    ISBN 0-521-21212-X. (Chapter 3 is entirely devoted to automorphic factors for the modular group.)



Popular posts from this blog

Italian cuisine

Bulgarian cuisine

Carrot