Monge–Ampère equation





In mathematics, a (real) Monge–Ampère equation is a nonlinear second-order partial differential equation of special kind. A second-order equation for the unknown function u of two variables x,y is of Monge–Ampère type if it is linear in the determinant of the Hessian matrix of u and in the second-order partial derivatives of u. The independent variables (x,y) vary over a given domain D of R2. The term also applies to analogous equations with n independent variables. The most complete results so far have been obtained when the equation is elliptic.


Monge–Ampère equations frequently arise in differential geometry, for example, in the Weyl and Minkowski problems in differential geometry of surfaces. They were first studied by Gaspard Monge in 1784[1] and later by André-Marie Ampère in 1820[2]. Important results in the theory of Monge–Ampère equations have been obtained by Sergei Bernstein, Aleksei Pogorelov, Charles Fefferman, and Louis Nirenberg.




Contents






  • 1 Description


  • 2 Rellich's theorem


  • 3 Ellipticity results


  • 4 Applications


  • 5 See also


  • 6 References


  • 7 Additional references


  • 8 External links





Description


Given two independent variables x and y, and one dependent variable u, the general Monge–Ampère equation is of the form


L[u]=A(uxxuyy−uxy2)+Buxx+2Cuxy+Duyy+E=0,{displaystyle L[u]=A(u_{xx}u_{yy}-u_{xy}^{2})+Bu_{xx}+2Cu_{xy}+Du_{yy}+E=0,}{displaystyle L[u]=A(u_{xx}u_{yy}-u_{xy}^{2})+Bu_{xx}+2Cu_{xy}+Du_{yy}+E=0,}

where A, B, C, D, and E are functions depending on the first-order variables x, y, u, ux, and uy only.



Rellich's theorem


Let Ω be a bounded domain in R3, and suppose that on Ω A, B, C, D, and E are continuous functions of x and y only. Consider the Dirichlet problem to find u so that



L[u]=0,on Ω{displaystyle L[u]=0,quad {text{on}} Omega }L[u]=0,quad {text{on}} Omega

u|∂Ω=g.{displaystyle u|_{partial Omega }=g.}u|_{{partial Omega }}=g.


If


BD−C2−AE>0,{displaystyle BD-C^{2}-AE>0,}BD-C^{2}-AE>0,

then the Dirichlet problem has at most two solutions.[3]



Ellipticity results


Suppose now that x is a variable with values in a domain in Rn, and that f(x,u,D2u) is a positive function. Then the Monge–Ampère equation


L[u]=detD2u−f(x,u,D2u)=0(1){displaystyle L[u]=det D^{2}u-f(mathbf {x} ,u,D^{2}u)=0qquad qquad (1)}{displaystyle L[u]=det D^{2}u-f(mathbf {x} ,u,D^{2}u)=0qquad qquad (1)}

is a nonlinear elliptic partial differential equation (in the sense that its linearization is elliptic), provided one confines attention to convex solutions.


Accordingly, the operator L satisfies versions of the maximum principle, and in particular solutions to the Dirichlet problem are unique, provided they exist.[citation needed]



Applications


Monge–Ampère equations arise naturally in several problems in Riemannian geometry, conformal geometry, and CR geometry. One of the simplest of these applications is to the problem of prescribed Gauss curvature. Suppose that a real-valued function K is specified on a domain Ω in Rn, the problem of prescribed Gauss curvature seeks to identify a hypersurface of Rn+1 as a graph z = u(x) over x ∈ Ω so that at each point of the surface the Gauss curvature is given by K(x). The resulting partial differential equation is


detD2u−K(x)(1+|Du|2)(n+2)/2=0.{displaystyle det D^{2}u-K(mathbf {x} )(1+|Du|^{2})^{(n+2)/2}=0.}{displaystyle det D^{2}u-K(mathbf {x} )(1+|Du|^{2})^{(n+2)/2}=0.}

The Monge–Ampère equations are related to the Monge–Kantorovich optimal mass transportation problem, when the "cost functional" therein is given by the Euclidean distance.[4]



See also


  • Complex Monge–Ampère equation


References




  1. ^ Monge, Gaspard (1784). "Mémoire sur le calcul intégral des équations aux différences partielles". Mémoires de l'Académie des Sciences. Paris, France: Imprimerie Royale. pp. 118–192..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ Ampère, André-Marie (1819). Mémoire contenant l'application de la théorie exposée dans le XVII. e Cahier du Journal de l'École polytechnique, à l'intégration des équations aux différentielles partielles du premier et du second ordre. Paris: De l'Imprimerie royale. Retrieved 2017-06-29.


  3. ^ Courant, R.; Hilbert, D. (1962). Methods of Mathematical Physics. 2. Interscience Publishers. p. 324.


  4. ^ Benamou, Jean David; Yann Brenier (2000). "A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem". Numerische Mathematik. 84 (3): 375–393. doi:10.1007/s002110050002.



Additional references



  • Gilbarg, D. and Trudinger, N. S. Elliptic Partial Differential Equations of Second Order. Berlin: Springer-Verlag, 1983.
    ISBN 3-540-41160-7
    ISBN 978-3540411604


  • A.V. Pogorelov (2001) [1994], "Monge–Ampère equation", in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4



External links


  • Weisstein, Eric W. "Monge-Ampère Differential Equation". MathWorld.



Popular posts from this blog

Shashamane

Carrot

Deprivation index