Fermi contact interaction





The Fermi contact interaction is the magnetic interaction between an electron and an atomic nucleus. Its major manifestation is in electron paramagnetic resonance and nuclear magnetic resonance spectroscopies, where it is responsible for the appearance of isotropic hyperfine coupling.




Contents






  • 1 Theory


  • 2 Use in magnetic resonance spectroscopy


  • 3 History


  • 4 References





Theory


The interaction requires that the electron be inside the nucleus. This requires that the electron occupy an s-orbital. The interaction is described with the parameter A, which takes the units megahertz. The magnitude of A is given by this relationships


A=−83π⟨μn⋅μe⟩|Ψ(0)|2(cgs){displaystyle A=-{frac {8}{3}}pi leftlangle {boldsymbol {mu }}_{n}cdot {boldsymbol {mu }}_{e}rightrangle |Psi (0)|^{2}qquad {mbox{(cgs)}}}{displaystyle A=-{frac {8}{3}}pi leftlangle {boldsymbol {mu }}_{n}cdot {boldsymbol {mu }}_{e}rightrangle |Psi (0)|^{2}qquad {mbox{(cgs)}}}

and


A=−23μ0⟨μn⋅μe⟩|Ψ(0)|2,(SI){displaystyle A=-{frac {2}{3}}mu _{0}leftlangle {boldsymbol {mu }}_{n}cdot {boldsymbol {mu }}_{e}rightrangle |Psi (0)|^{2},qquad {mbox{(SI)}}}{displaystyle A=-{frac {2}{3}}mu _{0}leftlangle {boldsymbol {mu }}_{n}cdot {boldsymbol {mu }}_{e}rightrangle |Psi (0)|^{2},qquad {mbox{(SI)}}}

where A is the energy of the interaction, μn is the nuclear magnetic moment, μe is the electron magnetic dipole moment, and Ψ(0) is the value of the electron wavefunction at the nucleus.[1]


It has been pointed out that it is an ill-defined problem because the standard formulation assumes that the nucleus has a magnetic dipolar moment, which is not always the case.[2]




Simplified view of the Fermi contact interaction in the terms of nuclear (green arrow) and electron spins (blue arrow). 1: in H2, 1H spin polarizes electron spin antiparallel. This is turn polarizes the other electron of the σ-bond antiparallel as demanded by Pauli's exclusion principle. Electron polarizes the other 1H. 1H nuclei are antiparallel and 1JHH has a positive value.[3]2: 1H nuclei are parallel. This form is unstable (has higher energy E) than the form 1.[4]3: vicinal 1H J-coupling via 12C or 13C nuclei. Same as before, but electron spins on p-orbitals are parallel due to Hund's 1. rule. 1H nuclei are antiparallel and 3JHH has a positive value.[3]



Use in magnetic resonance spectroscopy






1H NMR spectrum of 1,1'-dimethylnickelocene, illustrating the dramatic chemical shifts observed in some paramagnetic compounds. The sharp signals near 0 ppm are from solvent.[5]


Roughly, the magnitude of A indicates the extent to which the unpaired spin resides on the nucleus. Thus, knowledge of the A values allows one to map the singly occupied molecular orbital.[6]



History


The interaction was first derived by Enrico Fermi in 1930.[7] A classical derivation of this term is contained in "Classical Electrodynamics" by J. D. Jackson.[8] In short, the classical energy may be written in terms of the energy of one magnetic dipole moment in the magnetic field B(r) of another dipole. This field acquires a simple expression when the distance r between the two dipoles goes to zero, since


S(r)B(r)d3r=−23μ.{displaystyle int _{S(r)}mathbf {B} (mathbf {r} ),d^{3}mathbf {r} =-{frac {2}{3}}mu _{0}{boldsymbol {mu }}.}{displaystyle int _{S(r)}mathbf {B} (mathbf {r} ),d^{3}mathbf {r} =-{frac {2}{3}}mu _{0}{boldsymbol {mu }}.}



References





  1. ^
    Bucher, M. (2000). "The electron inside the nucleus: An almost classical derivation of the isotropic hyperfine interaction". European Journal of Physics. 21 (1): 19. Bibcode:2000EJPh...21...19B. doi:10.1088/0143-0807/21/1/303..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}



  2. ^
    Soliverez, C. E. (1980). "The contact hyperfine interaction: An ill-defined problem". Journal of Physics C. 13 (34): L1017. Bibcode:1980JPhC...13.1017S. doi:10.1088/0022-3719/13/34/002.



  3. ^ ab M, Balcı (2005). Basic ¹H- and ¹³C-NMR spectroscopy (1st ed.). Elsevier. pp. 103–105. ISBN 9780444518118.


  4. ^ Macomber, R. S. (1998). A complete introduction to modern NMR spectroscopy. Wiley. p. 135. ISBN 9780471157366.


  5. ^ Köhler, F. H., "Paramagnetic Complexes in Solution: The NMR Approach," in eMagRes, 2007, John Wiley. doi:10.1002/9780470034590.emrstm1229


  6. ^
    Drago, R. S. (1992). Physical Methods for Chemists (2nd ed.). Saunders College Publishing. ISBN 978-0030751769.



  7. ^
    Fermi, E. (1930). "Über die magnetischen Momente der Atomkerne". Zeitschrift für Physik. 60 (5–6): 320. Bibcode:1930ZPhy...60..320F. doi:10.1007/BF01339933.



  8. ^
    Jackson, J. D. (1998). Classical Electrodynamics (3rd ed.). Wiley. p. 184. ISBN 978-0471309321.










Popular posts from this blog

Italian cuisine

Bulgarian cuisine

Carrot