Knudsen diffusion






Schematic drawing of a molecule in a cylindrical pore in the case of Knudsen diffusion; are indicated the pore diameter (d) and the free path of the particle (l).


Knudsen diffusion is a means of diffusion that occurs when the scale length of a system is comparable to or smaller than the mean free path of the particles involved. An example of this is in a long pore with a narrow diameter (2–50 nm) because molecules frequently collide with the pore wall.[1]


Consider the diffusion of gas molecules through very small capillary pores. If the pore diameter is smaller than the mean free path of the diffusing gas molecules and the density of the gas is low, the gas molecules collide with the pore walls more frequently than with each other. This process is known as Knudsen flow or Knudsen diffusion.


The Knudsen number is a good measure of the relative importance of Knudsen diffusion. A Knudsen number much greater than one indicates Knudsen diffusion is important. In practice, Knudsen diffusion applies only to gases because the mean free path for molecules in the liquid state is very small, typically near the diameter of the molecule itself.


The diffusivity for Knudsen diffusion is obtained from the self-diffusion coefficient derived from the kinetic theory of gases:[2]




DAA∗u3=λ38RTπMA{displaystyle {D_{AA*}}={{lambda u} over {3}}={{lambda } over {3}}{sqrt {{8RT} over {pi M_{A}}}}}{displaystyle {D_{AA*}}={{lambda u} over {3}}={{lambda } over {3}}{sqrt {{8RT} over {pi M_{A}}}}}



For Knudsen diffusion, path length λ is replaced with pore diameter d{displaystyle d}d, as species A is now more likely to collide with the pore wall as opposed with another molecule. The Knudsen diffusivity for diffusing species A, DKA{displaystyle D_{KA}}D_{{KA}} is thus




DKA=du3=d38RTπMA,{displaystyle {D_{KA}}={du over {3}}={d over {3}}{sqrt {{8RT} over {pi M_{A}}}},}{displaystyle {D_{KA}}={du over {3}}={d over {3}}{sqrt {{8RT} over {pi M_{A}}}},}



where R{displaystyle R}R is the gas constant (8.3144 J/(mol·K) in SI units), molecular mass MA{displaystyle M_{A}}M_{{A}} is expressed in units of kg/mol, and temperature T has units of K. Knudsen diffusivity DKA{displaystyle D_{KA}}D_{{KA}} thus depends on the pore diameter, species molecular mass and temperature. Expressed as a molecular flux, Knudsen diffusion follows the equation for Fick's first law of diffusion:




JK=∇nDKA{displaystyle J_{K}=nabla nD_{KA}}{displaystyle J_{K}=nabla nD_{KA}}



Here, JK{displaystyle J_{K}}{displaystyle J_{K}} is the molcular flux in mol/m²·s, n{displaystyle n}n is the molar concentration in mol/m3{displaystyle mol/m^{3}}{displaystyle mol/m^{3}}. The diffusive flux is driven by a concentration gradient, which in most cases is embodied as a pressure gradient (i.e. n=P/RT{displaystyle n=P/RT}{displaystyle n=P/RT} therefore n=ΔPRTl{displaystyle nabla n={frac {Delta P}{RTl}}}{displaystyle nabla n={frac {Delta P}{RTl}}} where ΔP{displaystyle Delta P}Delta P is the pressure difference between both sides of the pore and l{displaystyle l}l is the length of the pore). If we assume that ΔP{displaystyle Delta P}Delta P is much less than Pave{displaystyle P_{ave}}{displaystyle P_{ave}}, the average absolute pressure in the system (i.e. ΔP≪Pave{displaystyle Delta Pll P_{ave}}{displaystyle Delta Pll P_{ave}}) then we can express the Knudsen flux as a volumetric flow rate as follows:




QK=ΔPd36lPave2πRTMA{displaystyle Q_{K}={frac {Delta Pd^{3}}{6lP_{ave}}}{sqrt {frac {2pi RT}{M_{A}}}}}{displaystyle Q_{K}={frac {Delta Pd^{3}}{6lP_{ave}}}{sqrt {frac {2pi RT}{M_{A}}}}}



Where QK{displaystyle Q_{K}}{displaystyle Q_{K}} is the volumetric flowrate in m3/s{displaystyle m^{3}/s}{displaystyle m^{3}/s}. If the pore is relatively short, entrance effects can significantly reduce to net flux through the pore. In this case, the law of effusion can be used to calculate the excess resistance due to entrance effects rather easily by substituting an effective length le=l+43d{displaystyle l_{e}=l+{tfrac {4}{3}}d}{displaystyle l_{e}=l+{tfrac {4}{3}}d} in for l{displaystyle l}l. Generally, the Knudsen process is significant only at low pressure and small pore diameter. However there may be instances where both Knudsen diffusion and molecular diffusion DAB{displaystyle D_{AB}}D_{{AB}} are important. The effective diffusivity of species A in a binary mixture of A and B, DAe{displaystyle D_{Ae}}D_{{Ae}} is determined by




1DAe=1−αyaDAB+1DKA,{displaystyle {frac {1}{{D}_{Ae}}}={frac {1-alpha {{y}_{a}}}{{D}_{AB}}}+{frac {1}{{D}_{KA}}},}{displaystyle {frac {1}{{D}_{Ae}}}={frac {1-alpha {{y}_{a}}}{{D}_{AB}}}+{frac {1}{{D}_{KA}}},}



where α=1+NBNA.{displaystyle alpha =1+{tfrac {{N}_{B}}{{N}_{A}}}.}{displaystyle alpha =1+{tfrac {{N}_{B}}{{N}_{A}}}.}




For cases where α = 0 (NA=−NB{displaystyle N_{A}=-N_{B}}{displaystyle N_{A}=-N_{B}})[dubious ] or where yA{displaystyle y_{A}}y_{{A}} is close to zero, the equation reduces to




1DAe=1DAB+1DKA.{displaystyle {frac {1}{{D}_{Ae}}}={frac {1}{{D}_{AB}}}+{frac {1}{{D}_{KA}}}.}{displaystyle {frac {1}{{D}_{Ae}}}={frac {1}{{D}_{AB}}}+{frac {1}{{D}_{KA}}}.}





Contents






  • 1 Knudsen self diffusion


  • 2 See also


  • 3 References


  • 4 External links





Knudsen self diffusion


In the Knudsen diffusion regime, the molecules do not interact with one another, so that they move in straight lines between points on the pore channel surface. Self-diffusivity is a measure of the translational mobility of individual molecules. Under conditions of thermodynamic equilibrium, a molecule is tagged and its trajectory followed over a long time. If the motion is diffusive, and in a medium without long-range correlations, the squared displacement of the molecule from its original position will eventually grow linearly with time (Einstein’s equation). To reduce statistical errors in simulations, the self-diffusivity, DS{displaystyle D_{S}}D_{{S}}, of a species is defined from ensemble averaging Einstein’s equation over a large enough number of molecules,N :[3]



See also



  • Knudsen Flow

  • Knudsen number

  • Diffusion

  • Effusion

  • Atomic diffusion

  • Mass diffusivity

  • Martin Knudsen



References





  1. ^ "Transport in Small Pores". Archived from the original on 2009-10-29. Retrieved 2009-10-20..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ Welty, James R.; Wicks, Charles E.; Wilson, Robert E.; Rorrer, Gregory L. (2008). Fundamentals of Momentum, Heat and Mass Transfer (5th ed.). Hoboken: John Wiley and Sons. ISBN 0-470-12868-2.


  3. ^ "Knudsen Self- and Fickian Diffusion in Rough Nanoporous Media" (PDF).




External links


  • Knudsen number and diffusivity calculators



Popular posts from this blog

Shashamane

Carrot

Deprivation index