Inequality of arithmetic and geometric means




In mathematics, the inequality of arithmetic and geometric means, or more briefly the AM–GM inequality, states that the arithmetic mean of a list of non-negative real numbers is greater than or equal to the geometric mean of the same list; and further, that the two means are equal if and only if every number in the list is the same.


The simplest non-trivial case — i.e., with more than one variable — for two non-negative numbers x and y, is the statement that


x+y2≥xy{displaystyle {frac {x+y}{2}}geq {sqrt {xy}}}{frac  {x+y}2}geq {sqrt  {xy}}

with equality if and only if x = y.
This case can be seen from the fact that the square of a real number is always non-negative (greater than or equal to zero) and from the elementary case (a ± b)2 = a2 ± 2ab + b2 of the binomial formula:


0≤(x−y)2=x2−2xy+y2=x2+2xy+y2−4xy=(x+y)2−4xy.{displaystyle {begin{aligned}0&leq (x-y)^{2}\&=x^{2}-2xy+y^{2}\&=x^{2}+2xy+y^{2}-4xy\&=(x+y)^{2}-4xy.end{aligned}}}{begin{aligned}0&leq (x-y)^{2}\&=x^{2}-2xy+y^{2}\&=x^{2}+2xy+y^{2}-4xy\&=(x+y)^{2}-4xy.end{aligned}}

Hence (x + y)2 ≥ 4xy, with equality precisely when (xy)2 = 0, i.e. x = y. The AM-GM inequality then follows from taking the positive square root of both sides.


For a geometrical interpretation, consider a rectangle with sides of length x and y, hence it has perimeter 2x + 2y and area xy. Similarly, a square with all sides of length xy has the perimeter 4xy and the same area as the rectangle. The simplest non-trivial case of the AM–GM inequality implies for the perimeters that 2x + 2y ≥ 4xy and that only the square has the smallest perimeter amongst all rectangles of equal area.


Extensions of the AM–GM inequality are available to include weights or generalized means.




Contents






  • 1 Background


  • 2 The inequality


  • 3 Geometric interpretation


  • 4 Example application


  • 5 Practical applications


  • 6 Proofs of the AM–GM inequality


    • 6.1 Proof using Jensen's inequality


    • 6.2 Proofs by induction


      • 6.2.1 Proof by induction #1


      • 6.2.2 Proof by induction #2




    • 6.3 Proof by Cauchy using forward–backward induction


      • 6.3.1 The case where all the terms are equal


      • 6.3.2 The case where not all the terms are equal


        • 6.3.2.1 The subcase where n = 2


        • 6.3.2.2 The subcase where n = 2k


        • 6.3.2.3 The subcase where n < 2k






    • 6.4 Proof by induction using basic calculus


    • 6.5 Proof by Pólya using the exponential function




  • 7 Generalizations


    • 7.1 Weighted AM–GM inequality


    • 7.2 Proof using Jensen's inequality


    • 7.3 Other generalizations




  • 8 See also


  • 9 Notes


  • 10 References


  • 11 External links





Background


The arithmetic mean, or less precisely the average, of a list of n numbers x1, x2, . . . , xn is the sum of the numbers divided by n:


x1+x2+⋯+xnn.{displaystyle {frac {x_{1}+x_{2}+cdots +x_{n}}{n}}.}{frac  {x_{1}+x_{2}+cdots +x_{n}}{n}}.

The geometric mean is similar, except that it is only defined for a list of nonnegative real numbers, and uses multiplication and a root in place of addition and division:


x1⋅x2⋯xnn.{displaystyle {sqrt[{n}]{x_{1}cdot x_{2}cdots x_{n}}}.}{sqrt[ {n}]{x_{1}cdot x_{2}cdots x_{n}}}.

If x1, x2, . . . , xn > 0, this is equal to the exponential of the arithmetic mean of the natural logarithms of the numbers:


exp⁡(ln⁡x1+ln⁡x2+⋯+ln⁡xnn).{displaystyle exp left({frac {ln {x_{1}}+ln {x_{2}}+cdots +ln {x_{n}}}{n}}right).}exp left({frac  {ln {x_{1}}+ln {x_{2}}+cdots +ln {x_{n}}}{n}}right).


The inequality


Restating the inequality using mathematical notation, we have that for any list of n nonnegative real numbers x1, x2, . . . , xn,


x1+x2+⋯+xnn≥x1⋅x2⋯xnn,{displaystyle {frac {x_{1}+x_{2}+cdots +x_{n}}{n}}geq {sqrt[{n}]{x_{1}cdot x_{2}cdots x_{n}}},,}{frac  {x_{1}+x_{2}+cdots +x_{n}}{n}}geq {sqrt[ {n}]{x_{1}cdot x_{2}cdots x_{n}}},,

and that equality holds if and only if x1 = x2 = · · · = xn.



Geometric interpretation


In two dimensions, 2x1 + 2x2 is the perimeter of a rectangle with sides of length x1 and x2. Similarly, 4x1x2 is the perimeter of a square with the same area, x1x2, as that rectangle. Thus for n = 2 the AM–GM inequality states that only the square has the smallest perimeter amongst all rectangles of equal area.


The full inequality is an extension of this idea to n dimensions. Every vertex of an n-dimensional box is connected to n edges. If these edges' lengths are x1, x2, . . . , xn, then x1 + x2 + · · · + xn is the total length of edges incident to the vertex. There are 2n vertices, so we multiply this by 2n; since each edge, however, meets two vertices, every edge is counted twice. Therefore, we divide by 2 and conclude that there are 2n−1n edges. There are equally many edges of each length and n lengths; hence there are 2n−1 edges of each length and the total of all edge lengths is 2n−1(x1 + x2 + · · · + xn). On the other hand,


2n−1nx1=2n−1nx1x2⋯xnn{displaystyle 2^{n-1}nx_{1}=2^{n-1}n{sqrt[{n}]{x_{1}x_{2}cdots x_{n}}}}{displaystyle 2^{n-1}nx_{1}=2^{n-1}n{sqrt[{n}]{x_{1}x_{2}cdots x_{n}}}}

is the total length of edges connected to a vertex on an n-dimensional cube of equal volume, since in this case x1=...=xn. Since the inequality says


x1+x2+⋯+xnn≥x1x2⋯xnn,{displaystyle {x_{1}+x_{2}+cdots +x_{n} over n}geq {sqrt[{n}]{x_{1}x_{2}cdots x_{n}}},}{x_{1}+x_{2}+cdots +x_{n} over n}geq {sqrt[ {n}]{x_{1}x_{2}cdots x_{n}}},

it can be restated by multiplying through by n2n–1 to obtain


2n−1(x1+x2+⋯+xn)≥2n−1nx1x2⋯xnn{displaystyle 2^{n-1}(x_{1}+x_{2}+cdots +x_{n})geq 2^{n-1}n{sqrt[{n}]{x_{1}x_{2}cdots x_{n}}}}{displaystyle 2^{n-1}(x_{1}+x_{2}+cdots +x_{n})geq 2^{n-1}n{sqrt[{n}]{x_{1}x_{2}cdots x_{n}}}}

with equality if and only if
x1 = x2 = · · · = xn.


Thus the AM–GM inequality states that only the n-cube has the smallest sum of lengths of edges connected to each vertex amongst all n-dimensional boxes with the same volume.[1]



Example application


Consider the function


f(x,y,z)=xy+yz+zx3{displaystyle f(x,y,z)={frac {x}{y}}+{sqrt {frac {y}{z}}}+{sqrt[{3}]{frac {z}{x}}}}f(x,y,z)={frac  {x}{y}}+{sqrt  {{frac  {y}{z}}}}+{sqrt[ {3}]{{frac  {z}{x}}}}

for all positive real numbers x, y and z. Suppose we wish to find the minimal value of this function. First we rewrite it a bit:


f(x,y,z)=6⋅xy+12yz+12yz+13zx3+13zx3+13zx36=6⋅x1+x2+x3+x4+x5+x66{displaystyle {begin{aligned}f(x,y,z)&=6cdot {frac {{frac {x}{y}}+{frac {1}{2}}{sqrt {frac {y}{z}}}+{frac {1}{2}}{sqrt {frac {y}{z}}}+{frac {1}{3}}{sqrt[{3}]{frac {z}{x}}}+{frac {1}{3}}{sqrt[{3}]{frac {z}{x}}}+{frac {1}{3}}{sqrt[{3}]{frac {z}{x}}}}{6}}\&=6cdot {frac {x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}}{6}}end{aligned}}}{begin{aligned}f(x,y,z)&=6cdot {frac  {{frac  {x}{y}}+{frac  {1}{2}}{sqrt  {{frac  {y}{z}}}}+{frac  {1}{2}}{sqrt  {{frac  {y}{z}}}}+{frac  {1}{3}}{sqrt[ {3}]{{frac  {z}{x}}}}+{frac  {1}{3}}{sqrt[ {3}]{{frac  {z}{x}}}}+{frac  {1}{3}}{sqrt[ {3}]{{frac  {z}{x}}}}}{6}}\&=6cdot {frac  {x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}}{6}}end{aligned}}

with


x1=xy,x2=x3=12yz,x4=x5=x6=13zx3.{displaystyle x_{1}={frac {x}{y}},qquad x_{2}=x_{3}={frac {1}{2}}{sqrt {frac {y}{z}}},qquad x_{4}=x_{5}=x_{6}={frac {1}{3}}{sqrt[{3}]{frac {z}{x}}}.}x_{1}={frac  {x}{y}},qquad x_{2}=x_{3}={frac  {1}{2}}{sqrt  {{frac  {y}{z}}}},qquad x_{4}=x_{5}=x_{6}={frac  {1}{3}}{sqrt[ {3}]{{frac  {z}{x}}}}.

Applying the AM–GM inequality for n = 6, we get


f(x,y,z)≥6⋅xy⋅12yz⋅12yz⋅13zx3⋅13zx3⋅13zx36=6⋅12⋅2⋅3⋅3⋅3xyyzzx6=22/3⋅31/2.{displaystyle {begin{aligned}f(x,y,z)&geq 6cdot {sqrt[{6}]{{frac {x}{y}}cdot {frac {1}{2}}{sqrt {frac {y}{z}}}cdot {frac {1}{2}}{sqrt {frac {y}{z}}}cdot {frac {1}{3}}{sqrt[{3}]{frac {z}{x}}}cdot {frac {1}{3}}{sqrt[{3}]{frac {z}{x}}}cdot {frac {1}{3}}{sqrt[{3}]{frac {z}{x}}}}}\&=6cdot {sqrt[{6}]{{frac {1}{2cdot 2cdot 3cdot 3cdot 3}}{frac {x}{y}}{frac {y}{z}}{frac {z}{x}}}}\&=2^{2/3}cdot 3^{1/2}.end{aligned}}}{begin{aligned}f(x,y,z)&geq 6cdot {sqrt[ {6}]{{frac  {x}{y}}cdot {frac  {1}{2}}{sqrt  {{frac  {y}{z}}}}cdot {frac  {1}{2}}{sqrt  {{frac  {y}{z}}}}cdot {frac  {1}{3}}{sqrt[ {3}]{{frac  {z}{x}}}}cdot {frac  {1}{3}}{sqrt[ {3}]{{frac  {z}{x}}}}cdot {frac  {1}{3}}{sqrt[ {3}]{{frac  {z}{x}}}}}}\&=6cdot {sqrt[ {6}]{{frac  {1}{2cdot 2cdot 3cdot 3cdot 3}}{frac  {x}{y}}{frac  {y}{z}}{frac  {z}{x}}}}\&=2^{{2/3}}cdot 3^{{1/2}}.end{aligned}}

Further, we know that the two sides are equal exactly when all the terms of the mean are equal:


f(x,y,z)=22/3⋅31/2whenxy=12yz=13zx3.{displaystyle f(x,y,z)=2^{2/3}cdot 3^{1/2}quad {mbox{when}}quad {frac {x}{y}}={frac {1}{2}}{sqrt {frac {y}{z}}}={frac {1}{3}}{sqrt[{3}]{frac {z}{x}}}.}f(x,y,z)=2^{{2/3}}cdot 3^{{1/2}}quad {mbox{when}}quad {frac  {x}{y}}={frac  {1}{2}}{sqrt  {{frac  {y}{z}}}}={frac  {1}{3}}{sqrt[ {3}]{{frac  {z}{x}}}}.

All the points (x, y, z) satisfying these conditions lie on a half-line starting at the origin and are given by


(x,y,z)=(t,233t,332t)witht>0.{displaystyle (x,y,z)={biggr (}t,{sqrt[{3}]{2}}{sqrt {3}},t,{frac {3{sqrt {3}}}{2}},t{biggr )}quad {mbox{with}}quad t>0.}{displaystyle (x,y,z)={biggr (}t,{sqrt[{3}]{2}}{sqrt {3}},t,{frac {3{sqrt {3}}}{2}},t{biggr )}quad {mbox{with}}quad t>0.}


Practical applications


An important practical application in financial mathematics is to computing the rate of return: the annualized return, computed via the geometric mean, is less than the average annual return, computed by the arithmetic mean (or equal if all returns are equal). This is important in analyzing investments, as the average return overstates the cumulative effect.



Proofs of the AM–GM inequality



Proof using Jensen's inequality


Jensen's inequality states that the value of a concave function of an arithmetic mean is greater than or equal to the arithmetic mean of the function's values. Since the logarithm function is concave, we have


log⁡(∑ixin)≥1nlog⁡xi=∑(log⁡xi1/n)=log⁡(∏xi1/n).{displaystyle log left({frac {sum _{i}x_{i}}{n}}right)geq sum {frac {1}{n}}log x_{i}=sum left(log x_{i}^{1/n}right)=log left(prod x_{i}^{1/n}right).}{displaystyle log left({frac {sum _{i}x_{i}}{n}}right)geq sum {frac {1}{n}}log x_{i}=sum left(log x_{i}^{1/n}right)=log left(prod x_{i}^{1/n}right).}

Taking antilogs of the far left and far right sides, we have the AM-GM inequality.



Proofs by induction


We have to show that


x1+x2+⋯+xnn≥x1x2⋯xnn{displaystyle {frac {x_{1}+x_{2}+cdots +x_{n}}{n}}geq {sqrt[{n}]{x_{1}x_{2}cdots x_{n}}}}{frac  {x_{1}+x_{2}+cdots +x_{n}}{n}}geq {sqrt[ {n}]{x_{1}x_{2}cdots x_{n}}}

with equality only when all numbers are equal. If xixj, then replacing both xi and xj by
(xi + xj)/2 will leave the arithmetic mean on the left-hand side unchanged, but will increase the geometric mean on the right-hand side because


(xi+xj2)2−xixj=(xi−xj2)2>0.{displaystyle {Bigl (}{frac {x_{i}+x_{j}}{2}}{Bigr )}^{2}-x_{i}x_{j}={Bigl (}{frac {x_{i}-x_{j}}{2}}{Bigr )}^{2}>0.}{Bigl (}{frac  {x_{i}+x_{j}}{2}}{Bigr )}^{2}-x_{i}x_{j}={Bigl (}{frac  {x_{i}-x_{j}}{2}}{Bigr )}^{2}>0.

Thus the right-hand side will be largest when all xis are equal to the arithmetic mean


α=x1+x2+⋯+xnn,{displaystyle alpha ={frac {x_{1}+x_{2}+cdots +x_{n}}{n}},}{displaystyle alpha ={frac {x_{1}+x_{2}+cdots +x_{n}}{n}},}

thus as this is then the largest value of right-hand side of the expression, we have


x1+x2+⋯+xnn=αααn≥x1x2⋯xnn.{displaystyle {frac {x_{1}+x_{2}+cdots +x_{n}}{n}}=alpha ={sqrt[{n}]{alpha alpha cdots alpha }}geq {sqrt[{n}]{x_{1}x_{2}cdots x_{n}}}.}{displaystyle {frac {x_{1}+x_{2}+cdots +x_{n}}{n}}=alpha ={sqrt[{n}]{alpha alpha cdots alpha }}geq {sqrt[{n}]{x_{1}x_{2}cdots x_{n}}}.}

This is a valid proof for the case n = 2, but the procedure of taking iteratively pairwise averages may fail to produce n equal numbers in the case n ≥ 3. An example of this case is x1 = x2x3: Averaging two different numbers produces two equal numbers, but the third one is still different. Therefore, we never actually get an inequality involving the geometric mean of three equal numbers.


Hence, an additional trick or a modified argument is necessary to turn the above idea into a valid proof for the case n ≥ 3.



Proof by induction #1


With the arithmetic mean


α= x1+⋯+xnn{displaystyle alpha ={frac { x_{1}+cdots +x_{n}}{n}}}alpha ={frac  { x_{1}+cdots +x_{n}}n}

of the non-negative real numbers x1, . . . , xn, the AM–GM statement is equivalent to


αn≥x1x2⋯xn{displaystyle alpha ^{n}geq x_{1}x_{2}cdots x_{n}}{displaystyle alpha ^{n}geq x_{1}x_{2}cdots x_{n}}

with equality if and only if α = xi for all i ∈ {1, . . . , n}.


For the following proof we apply mathematical induction and only well-known rules of arithmetic.


Induction basis: For n = 1 the statement is true with equality.


Induction hypothesis: Suppose that the AM–GM statement holds for all choices of n non-negative real numbers.


Induction step: Consider n + 1 non-negative real numbers x1, . . . , xn+1, . Their arithmetic mean α satisfies


(n+1)α= x1+⋯+xn+xn+1.{displaystyle (n+1)alpha = x_{1}+cdots +x_{n}+x_{n+1}.}{displaystyle (n+1)alpha = x_{1}+cdots +x_{n}+x_{n+1}.}

If all the xi are equal to α, then we have equality in the AM–GM statement and we are done. In the case where some are not equal to α, there must exist one number that is greater than the arithmetic mean α, and one that is smaller than α. Without loss of generality, we can reorder our xi in order to place these two particular elements at the end: xn > α and xn+1 < α. Then


(xn−α)>0αxn+1>0{displaystyle (x_{n}-alpha )>0qquad alpha -x_{n+1}>0}{displaystyle (x_{n}-alpha )>0qquad alpha -x_{n+1}>0}

(xn−α)(αxn+1)>0.(∗){displaystyle implies (x_{n}-alpha )(alpha -x_{n+1})>0,.qquad (*)}{displaystyle implies (x_{n}-alpha )(alpha -x_{n+1})>0,.qquad (*)}

Now define y with


y:=xn+xn+1−αxn−α>0,{displaystyle y:=x_{n}+x_{n+1}-alpha geq x_{n}-alpha >0,,}y:=x_{n}+x_{{n+1}}-alpha geq x_{n}-alpha >0,,

and consider the n numbers x1, . . . , xn–1, y which are all non-negative. Since


(n+1)α=x1+⋯+xn−1+xn+xn+1{displaystyle (n+1)alpha =x_{1}+cdots +x_{n-1}+x_{n}+x_{n+1}}{displaystyle (n+1)alpha =x_{1}+cdots +x_{n-1}+x_{n}+x_{n+1}}

=x1+⋯+xn−1+xn+xn+1−α=y,{displaystyle nalpha =x_{1}+cdots +x_{n-1}+underbrace {x_{n}+x_{n+1}-alpha } _{=,y},}nalpha =x_{1}+cdots +x_{{n-1}}+underbrace {x_{n}+x_{{n+1}}-alpha }_{{=,y}},

Thus, α is also the arithmetic mean of n numbers x1, . . . , xn–1, y and the induction hypothesis implies


αn+1=αn⋅αx1x2⋯xn−1y⋅α.(∗){displaystyle alpha ^{n+1}=alpha ^{n}cdot alpha geq x_{1}x_{2}cdots x_{n-1}ycdot alpha .qquad (**)}alpha ^{{n+1}}=alpha ^{n}cdot alpha geq x_{1}x_{2}cdots x_{{n-1}}ycdot alpha .qquad (**)

Due to (*) we know that


(xn+xn+1−α=y)αxnxn+1=(xn−α)(αxn+1)>0,{displaystyle (underbrace {x_{n}+x_{n+1}-alpha } _{=,y})alpha -x_{n}x_{n+1}=(x_{n}-alpha )(alpha -x_{n+1})>0,}(underbrace {x_{n}+x_{{n+1}}-alpha }_{{=,y}})alpha -x_{n}x_{{n+1}}=(x_{n}-alpha )(alpha -x_{{n+1}})>0,

hence


>xnxn+1,(∗){displaystyle yalpha >x_{n}x_{n+1},,qquad ({*}{*}{*})}yalpha >x_{n}x_{{n+1}},,qquad ({*}{*}{*})

in particular α > 0. Therefore, if at least one of the numbers x1, . . . , xn–1 is zero, then we already have strict inequality in (**). Otherwise the right-hand side of (**) is positive and strict inequality is obtained by using the estimate (***) to get a lower bound of the right-hand side of (**). Thus, in both cases we can substitute (***) into (**) to get


αn+1>x1x2⋯xn−1xnxn+1,{displaystyle alpha ^{n+1}>x_{1}x_{2}cdots x_{n-1}x_{n}x_{n+1},,}alpha ^{{n+1}}>x_{1}x_{2}cdots x_{{n-1}}x_{n}x_{{n+1}},,

which completes the proof.



Proof by induction #2


First of all we shall prove that for real numbers x1 < 1 and x2 > 1 there follows


x1+x2>x1x2+1.{displaystyle x_{1}+x_{2}>x_{1}x_{2}+1.}{displaystyle x_{1}+x_{2}>x_{1}x_{2}+1.}

Indeed, multiplying both sides of the inequality x2 > 1 by 1 – x1, gives


x2−x1x2>1−x1,{displaystyle x_{2}-x_{1}x_{2}>1-x_{1},}{displaystyle x_{2}-x_{1}x_{2}>1-x_{1},}

whence the required inequality is obtained immediately.


Now, we are going to prove that for positive real numbers x1, . . . , xn satisfying
x1 . . . xn = 1, there holds


x1+⋯+xn≥n.{displaystyle x_{1}+cdots +x_{n}geq n.}{displaystyle x_{1}+cdots +x_{n}geq n.}

The equality holds only if x1 = ... = xn = 1.


Induction basis: For n = 2 the statement is true because of the above property.


Induction hypothesis: Suppose that the statement is true for all natural numbers up to n – 1.


Induction step: Consider natural number n, i.e. for positive real numbers x1, . . . , xn, there holds x1 . . . xn = 1. There exists at least one xk < 1, so there must be at least one xj > 1. The generality will not be lost, if we let k =n – 1 and j = n.


Further, the equality x1 . . . xn = 1 we shall write in the form of (x1 . . . xn–2) (xn–1xn) = 1. Then, the induction hypothesis implies


(x1+⋯+xn−2)+(xn−1xn)>n−1.{displaystyle (x_{1}+cdots +x_{n-2})+(x_{n-1}x_{n})>n-1.}{displaystyle (x_{1}+cdots +x_{n-2})+(x_{n-1}x_{n})>n-1.}

However, taking into account the induction basis, we have


x1+⋯+xn−2+xn−1+xn=(x1+⋯+xn−2)+(xn−1+xn)>(x1+⋯+xn−2)+xn−1xn+1>n,{displaystyle {begin{aligned}x_{1}+cdots +x_{n-2}+x_{n-1}+x_{n}&=(x_{1}+cdots +x_{n-2})+(x_{n-1}+x_{n})\&>(x_{1}+cdots +x_{n-2})+x_{n-1}x_{n}+1\&>n,end{aligned}}}{displaystyle {begin{aligned}x_{1}+cdots +x_{n-2}+x_{n-1}+x_{n}&=(x_{1}+cdots +x_{n-2})+(x_{n-1}+x_{n})\&>(x_{1}+cdots +x_{n-2})+x_{n-1}x_{n}+1\&>n,end{aligned}}}

which completes the proof.


For positive real numbers a1, . . . , an, let's denote


x1=a1a1⋯ann,...,xn=ana1⋯ann.{displaystyle x_{1}={frac {a_{1}}{sqrt[{n}]{a_{1}cdots a_{n}}}},...,x_{n}={frac {a_{n}}{sqrt[{n}]{a_{1}cdots a_{n}}}}.}{displaystyle x_{1}={frac {a_{1}}{sqrt[{n}]{a_{1}cdots a_{n}}}},...,x_{n}={frac {a_{n}}{sqrt[{n}]{a_{1}cdots a_{n}}}}.}

The numbers x1, . . . , xn satisfy the condition x1 . . . xn = 1. So we have


a1a1⋯ann+⋯+ana1⋯ann≥n,{displaystyle {frac {a_{1}}{sqrt[{n}]{a_{1}cdots a_{n}}}}+cdots +{frac {a_{n}}{sqrt[{n}]{a_{1}cdots a_{n}}}}geq n,}{displaystyle {frac {a_{1}}{sqrt[{n}]{a_{1}cdots a_{n}}}}+cdots +{frac {a_{n}}{sqrt[{n}]{a_{1}cdots a_{n}}}}geq n,}

whence we obtain


a1+⋯+ann≥a1⋯ann,{displaystyle {frac {a_{1}+cdots +a_{n}}{n}}geq {sqrt[{n}]{a_{1}cdots a_{n}}},}{displaystyle {frac {a_{1}+cdots +a_{n}}{n}}geq {sqrt[{n}]{a_{1}cdots a_{n}}},}

with the equality holding only for a1 = ... = an = 1.



Proof by Cauchy using forward–backward induction


The following proof by cases relies directly on well-known rules of arithmetic but employs the rarely used technique of forward-backward-induction. It is essentially from Augustin Louis Cauchy and can be found in his Cours d'analyse.[2]



The case where all the terms are equal


If all the terms are equal:


x1=x2=⋯=xn,{displaystyle x_{1}=x_{2}=cdots =x_{n},}x_{1}=x_{2}=cdots =x_{n},

then their sum is nx1, so their arithmetic mean is x1; and their product is x1n, so their geometric mean is x1; therefore, the arithmetic mean and geometric mean are equal, as desired.



The case where not all the terms are equal


It remains to show that if not all the terms are equal, then the arithmetic mean is greater than the geometric mean. Clearly, this is only possible when n > 1.


This case is significantly more complex, and we divide it into subcases.



The subcase where n = 2

If n = 2, then we have two terms, x1 and x2, and since (by our assumption) not all terms are equal, we have:


(x1+x22)2−x1x2=14(x12+2x1x2+x22)−x1x2=14(x12−2x1x2+x22)=(x1−x22)2>0,{displaystyle {begin{aligned}{Bigl (}{frac {x_{1}+x_{2}}{2}}{Bigr )}^{2}-x_{1}x_{2}&={frac {1}{4}}(x_{1}^{2}+2x_{1}x_{2}+x_{2}^{2})-x_{1}x_{2}\&={frac {1}{4}}(x_{1}^{2}-2x_{1}x_{2}+x_{2}^{2})\&={Bigl (}{frac {x_{1}-x_{2}}{2}}{Bigr )}^{2}>0,end{aligned}}}{begin{aligned}{Bigl (}{frac  {x_{1}+x_{2}}{2}}{Bigr )}^{2}-x_{1}x_{2}&={frac  14}(x_{1}^{2}+2x_{1}x_{2}+x_{2}^{2})-x_{1}x_{2}\&={frac  14}(x_{1}^{2}-2x_{1}x_{2}+x_{2}^{2})\&={Bigl (}{frac  {x_{1}-x_{2}}{2}}{Bigr )}^{2}>0,end{aligned}}

hence


x1+x22>x1x2{displaystyle {frac {x_{1}+x_{2}}{2}}>{sqrt {x_{1}x_{2}}}}{frac  {x_{1}+x_{2}}{2}}>{sqrt  {x_{1}x_{2}}}

as desired.



The subcase where n = 2k

Consider the case where n = 2k, where k is a positive integer. We proceed by mathematical induction.


In the base case, k = 1, so n = 2. We have already shown that the inequality holds when n = 2, so we are done.


Now, suppose that for a given k > 1, we have already shown that the inequality holds for n = 2k−1, and we wish to show that it holds for n = 2k. To do so, we apply the inequality twice for 2k-1 numbers and once for 2 numbers to obtain:


x1+x2+⋯+x2k2k=x1+x2+⋯+x2k−12k−1+x2k−1+1+x2k−1+2+⋯+x2k2k−12≥x1x2⋯x2k−12k−1+x2k−1+1x2k−1+2⋯x2k2k−12≥x1x2⋯x2k−12k−1x2k−1+1x2k−1+2⋯x2k2k−1=x1x2⋯x2k2k{displaystyle {begin{aligned}{frac {x_{1}+x_{2}+cdots +x_{2^{k}}}{2^{k}}}&{}={frac {{frac {x_{1}+x_{2}+cdots +x_{2^{k-1}}}{2^{k-1}}}+{frac {x_{2^{k-1}+1}+x_{2^{k-1}+2}+cdots +x_{2^{k}}}{2^{k-1}}}}{2}}\[7pt]&geq {frac {{sqrt[{2^{k-1}}]{x_{1}x_{2}cdots x_{2^{k-1}}}}+{sqrt[{2^{k-1}}]{x_{2^{k-1}+1}x_{2^{k-1}+2}cdots x_{2^{k}}}}}{2}}\[7pt]&geq {sqrt {{sqrt[{2^{k-1}}]{x_{1}x_{2}cdots x_{2^{k-1}}}}{sqrt[{2^{k-1}}]{x_{2^{k-1}+1}x_{2^{k-1}+2}cdots x_{2^{k}}}}}}\[7pt]&={sqrt[{2^{k}}]{x_{1}x_{2}cdots x_{2^{k}}}}end{aligned}}}{begin{aligned}{frac  {x_{1}+x_{2}+cdots +x_{{2^{k}}}}{2^{k}}}&{}={frac  {{frac  {x_{1}+x_{2}+cdots +x_{{2^{{k-1}}}}}{2^{{k-1}}}}+{frac  {x_{{2^{{k-1}}+1}}+x_{{2^{{k-1}}+2}}+cdots +x_{{2^{k}}}}{2^{{k-1}}}}}{2}}\[7pt]&geq {frac  {{sqrt[ {2^{{k-1}}}]{x_{1}x_{2}cdots x_{{2^{{k-1}}}}}}+{sqrt[ {2^{{k-1}}}]{x_{{2^{{k-1}}+1}}x_{{2^{{k-1}}+2}}cdots x_{{2^{k}}}}}}{2}}\[7pt]&geq {sqrt  {{sqrt[ {2^{{k-1}}}]{x_{1}x_{2}cdots x_{{2^{{k-1}}}}}}{sqrt[ {2^{{k-1}}}]{x_{{2^{{k-1}}+1}}x_{{2^{{k-1}}+2}}cdots x_{{2^{k}}}}}}}\[7pt]&={sqrt[ {2^{k}}]{x_{1}x_{2}cdots x_{{2^{k}}}}}end{aligned}}

where in the first inequality, the two sides are equal only if


x1=x2=⋯=x2k−1{displaystyle x_{1}=x_{2}=cdots =x_{2^{k-1}}}x_{1}=x_{2}=cdots =x_{{2^{{k-1}}}}

and


x2k−1+1=x2k−1+2=⋯=x2k{displaystyle x_{2^{k-1}+1}=x_{2^{k-1}+2}=cdots =x_{2^{k}}}x_{{2^{{k-1}}+1}}=x_{{2^{{k-1}}+2}}=cdots =x_{{2^{k}}}

(in which case the first arithmetic mean and first geometric mean are both equal to x1, and similarly with the second arithmetic mean and second geometric mean); and in the second inequality, the two sides are only equal if the two geometric means are equal. Since not all 2k numbers are equal, it is not possible for both inequalities to be equalities, so we know that:


x1+x2+⋯+x2k2k>x1x2⋯x2k2k{displaystyle {frac {x_{1}+x_{2}+cdots +x_{2^{k}}}{2^{k}}}>{sqrt[{2^{k}}]{x_{1}x_{2}cdots x_{2^{k}}}}}{frac  {x_{1}+x_{2}+cdots +x_{{2^{k}}}}{2^{k}}}>{sqrt[ {2^{k}}]{x_{1}x_{2}cdots x_{{2^{k}}}}}

as desired.



The subcase where n < 2k

If n is not a natural power of 2, then it is certainly less than some natural power of 2, since the sequence 2, 4, 8, . . . , 2k, . . . is unbounded above. Therefore, without loss of generality, let m be some natural power of 2 that is greater than n.


So, if we have n terms, then let us denote their arithmetic mean by α, and expand our list of terms thus:


xn+1=xn+2=⋯=xm=α.{displaystyle x_{n+1}=x_{n+2}=cdots =x_{m}=alpha .}x_{{n+1}}=x_{{n+2}}=cdots =x_{m}=alpha .

We then have:


α=x1+x2+⋯+xnn=mn(x1+x2+⋯+xn)m=x1+x2+⋯+xn+m−nn(x1+x2+⋯+xn)m=x1+x2+⋯+xn+(m−n)αm=x1+x2+⋯+xn+xn+1+⋯+xmm>x1x2⋯xnxn+1⋯xmm=x1x2⋯xnαm−nm,{displaystyle {begin{aligned}alpha &={frac {x_{1}+x_{2}+cdots +x_{n}}{n}}\[6pt]&={frac {{frac {m}{n}}left(x_{1}+x_{2}+cdots +x_{n}right)}{m}}\[6pt]&={frac {x_{1}+x_{2}+cdots +x_{n}+{frac {m-n}{n}}left(x_{1}+x_{2}+cdots +x_{n}right)}{m}}\[6pt]&={frac {x_{1}+x_{2}+cdots +x_{n}+left(m-nright)alpha }{m}}\[6pt]&={frac {x_{1}+x_{2}+cdots +x_{n}+x_{n+1}+cdots +x_{m}}{m}}\[6pt]&>{sqrt[{m}]{x_{1}x_{2}cdots x_{n}x_{n+1}cdots x_{m}}}\[6pt]&={sqrt[{m}]{x_{1}x_{2}cdots x_{n}alpha ^{m-n}}},,end{aligned}}}{begin{aligned}alpha &={frac  {x_{1}+x_{2}+cdots +x_{n}}{n}}\[6pt]&={frac  {{frac  {m}{n}}left(x_{1}+x_{2}+cdots +x_{n}right)}{m}}\[6pt]&={frac  {x_{1}+x_{2}+cdots +x_{n}+{frac  {m-n}{n}}left(x_{1}+x_{2}+cdots +x_{n}right)}{m}}\[6pt]&={frac  {x_{1}+x_{2}+cdots +x_{n}+left(m-nright)alpha }{m}}\[6pt]&={frac  {x_{1}+x_{2}+cdots +x_{n}+x_{{n+1}}+cdots +x_{m}}{m}}\[6pt]&>{sqrt[ {m}]{x_{1}x_{2}cdots x_{n}x_{{n+1}}cdots x_{m}}}\[6pt]&={sqrt[ {m}]{x_{1}x_{2}cdots x_{n}alpha ^{{m-n}}}},,end{aligned}}

so


αm>x1x2⋯xnαm−n{displaystyle alpha ^{m}>x_{1}x_{2}cdots x_{n}alpha ^{m-n}}alpha ^{m}>x_{1}x_{2}cdots x_{n}alpha ^{{m-n}}

and


α>x1x2⋯xnn{displaystyle alpha >{sqrt[{n}]{x_{1}x_{2}cdots x_{n}}}}alpha >{sqrt[ {n}]{x_{1}x_{2}cdots x_{n}}}

as desired.



Proof by induction using basic calculus


The following proof uses mathematical induction and some basic differential calculus.


Induction basis: For n = 1 the statement is true with equality.


Induction hypothesis: Suppose that the AM–GM statement holds for all choices of n non-negative real numbers.


Induction step: In order to prove the statement for n + 1 non-negative real numbers x1, . . . , xn, xn+1, we need to prove that


x1+⋯+xn+xn+1n+1−(x1⋯xnxn+1)1n+1≥0{displaystyle {frac {x_{1}+cdots +x_{n}+x_{n+1}}{n+1}}-({x_{1}cdots x_{n}x_{n+1}})^{frac {1}{n+1}}geq 0}{frac  {x_{1}+cdots +x_{n}+x_{{n+1}}}{n+1}}-({x_{1}cdots x_{n}x_{{n+1}}})^{{{frac  {1}{n+1}}}}geq 0

with equality only if all the n + 1 numbers are equal.


If all numbers are zero, the inequality holds with equality. If some but not all numbers are zero, we have strict inequality. Therefore, we may assume in the following, that all n + 1 numbers are positive.


We consider the last number xn+1 as a variable and define the function


f(t)=x1+⋯+xn+tn+1−(x1⋯xnt)1n+1,t>0.{displaystyle f(t)={frac {x_{1}+cdots +x_{n}+t}{n+1}}-({x_{1}cdots x_{n}t})^{frac {1}{n+1}},qquad t>0.}f(t)={frac  {x_{1}+cdots +x_{n}+t}{n+1}}-({x_{1}cdots x_{n}t})^{{{frac  {1}{n+1}}}},qquad t>0.

Proving the induction step is equivalent to showing that f(t) ≥ 0 for all t > 0, with f(t) = 0 only if x1, . . . , xn and t are all equal. This can be done by analyzing the critical points of f using some basic calculus.


The first derivative of f is given by


f′(t)=1n+1−1n+1(x1⋯xn)1n+1t−nn+1,t>0.{displaystyle f'(t)={frac {1}{n+1}}-{frac {1}{n+1}}({x_{1}cdots x_{n}})^{frac {1}{n+1}}t^{-{frac {n}{n+1}}},qquad t>0.}f'(t)={frac  {1}{n+1}}-{frac  {1}{n+1}}({x_{1}cdots x_{n}})^{{{frac  {1}{n+1}}}}t^{{-{frac  {n}{n+1}}}},qquad t>0.

A critical point t0 has to satisfy f′(t0) = 0, which means


(x1⋯xn)1n+1t0−nn+1=1.{displaystyle ({x_{1}cdots x_{n}})^{frac {1}{n+1}}t_{0}^{-{frac {n}{n+1}}}=1.}({x_{1}cdots x_{n}})^{{{frac  {1}{n+1}}}}t_{0}^{{-{frac  {n}{n+1}}}}=1.

After a small rearrangement we get


t0nn+1=(x1⋯xn)1n+1,{displaystyle t_{0}^{frac {n}{n+1}}=({x_{1}cdots x_{n}})^{frac {1}{n+1}},}t_{0}^{{{frac  {n}{n+1}}}}=({x_{1}cdots x_{n}})^{{{frac  {1}{n+1}}}},

and finally


t0=(x1⋯xn)1n,{displaystyle t_{0}=({x_{1}cdots x_{n}})^{frac {1}{n}},}t_{0}=({x_{1}cdots x_{n}})^{{{frac  {1}n}}},

which is the geometric mean of x1, . . . , xn. This is the only critical point of f. Since f′′(t) > 0 for all t > 0, the function f is strictly convex and has a strict global minimum at t0. Next we compute the value of the function at this global minimum:


f(t0)=x1+⋯+xn+(x1⋯xn)1/nn+1−(x1⋯xn)1n+1(x1⋯xn)1n(n+1)=x1+⋯+xnn+1+1n+1(x1⋯xn)1n−(x1⋯xn)1n=x1+⋯+xnn+1−nn+1(x1⋯xn)1n=nn+1(x1+⋯+xnn−(x1⋯xn)1n)≥0,{displaystyle {begin{aligned}f(t_{0})&={frac {x_{1}+cdots +x_{n}+({x_{1}cdots x_{n}})^{1/n}}{n+1}}-({x_{1}cdots x_{n}})^{frac {1}{n+1}}({x_{1}cdots x_{n}})^{frac {1}{n(n+1)}}\&={frac {x_{1}+cdots +x_{n}}{n+1}}+{frac {1}{n+1}}({x_{1}cdots x_{n}})^{frac {1}{n}}-({x_{1}cdots x_{n}})^{frac {1}{n}}\&={frac {x_{1}+cdots +x_{n}}{n+1}}-{frac {n}{n+1}}({x_{1}cdots x_{n}})^{frac {1}{n}}\&={frac {n}{n+1}}{Bigl (}{frac {x_{1}+cdots +x_{n}}{n}}-({x_{1}cdots x_{n}})^{frac {1}{n}}{Bigr )}\&geq 0,end{aligned}}}{displaystyle {begin{aligned}f(t_{0})&={frac {x_{1}+cdots +x_{n}+({x_{1}cdots x_{n}})^{1/n}}{n+1}}-({x_{1}cdots x_{n}})^{frac {1}{n+1}}({x_{1}cdots x_{n}})^{frac {1}{n(n+1)}}\&={frac {x_{1}+cdots +x_{n}}{n+1}}+{frac {1}{n+1}}({x_{1}cdots x_{n}})^{frac {1}{n}}-({x_{1}cdots x_{n}})^{frac {1}{n}}\&={frac {x_{1}+cdots +x_{n}}{n+1}}-{frac {n}{n+1}}({x_{1}cdots x_{n}})^{frac {1}{n}}\&={frac {n}{n+1}}{Bigl (}{frac {x_{1}+cdots +x_{n}}{n}}-({x_{1}cdots x_{n}})^{frac {1}{n}}{Bigr )}\&geq 0,end{aligned}}}

where the final inequality holds due to the induction hypothesis. The hypothesis also says that we can have equality only when x1, . . . , xn are all equal. In this case, their geometric mean  t0 has the same value, Hence, unless x1, . . . , xn, xn+1 are all equal, we have f(xn+1) > 0. This completes the proof.


This technique can be used in the same manner to prove the generalized AM–GM inequality and Cauchy–Schwarz inequality in Euclidean space Rn.



Proof by Pólya using the exponential function


George Pólya provided a proof similar to what follows. Let f(x) = ex–1x for all real x, with first derivative f′(x) = ex–1 – 1 and second derivative f′′(x) = ex–1. Observe that f(1) = 0, f′(1) = 0 and f′′(x) > 0 for all real x, hence f is strictly convex with the absolute minimum at x = 1. Hence x ≤ ex–1 for all real x with equality only for x = 1.


Consider a list of non-negative real numbers x1, x2, . . . , xn. If they are all zero, then the AM–GM inequality holds with equality. Hence we may assume in the following for their arithmetic mean α > 0. By n-fold application of the above inequality, we obtain that


x1αx2αxnαex1α1ex2α1⋯exnα1=exp⁡(x1α1+x2α1+⋯+xnα1),(∗){displaystyle {begin{aligned}{{frac {x_{1}}{alpha }}{frac {x_{2}}{alpha }}cdots {frac {x_{n}}{alpha }}}&leq {e^{{frac {x_{1}}{alpha }}-1}e^{{frac {x_{2}}{alpha }}-1}cdots e^{{frac {x_{n}}{alpha }}-1}}\&=exp {Bigl (}{frac {x_{1}}{alpha }}-1+{frac {x_{2}}{alpha }}-1+cdots +{frac {x_{n}}{alpha }}-1{Bigr )},qquad (*)end{aligned}}}{begin{aligned}{{frac  {x_{1}}{alpha }}{frac  {x_{2}}{alpha }}cdots {frac  {x_{n}}{alpha }}}&leq {e^{{{frac  {x_{1}}{alpha }}-1}}e^{{{frac  {x_{2}}{alpha }}-1}}cdots e^{{{frac  {x_{n}}{alpha }}-1}}}\&=exp {Bigl (}{frac  {x_{1}}{alpha }}-1+{frac  {x_{2}}{alpha }}-1+cdots +{frac  {x_{n}}{alpha }}-1{Bigr )},qquad (*)end{aligned}}

with equality if and only if xi = α for every i ∈ {1, . . . , n}. The argument of the exponential function can be simplified:


x1α1+x2α1+⋯+xnα1=x1+x2+⋯+xnαn=n−n=0.{displaystyle {begin{aligned}{frac {x_{1}}{alpha }}-1+{frac {x_{2}}{alpha }}-1+cdots +{frac {x_{n}}{alpha }}-1&={frac {x_{1}+x_{2}+cdots +x_{n}}{alpha }}-n\&=n-n\&=0.end{aligned}}}{begin{aligned}{frac  {x_{1}}{alpha }}-1+{frac  {x_{2}}{alpha }}-1+cdots +{frac  {x_{n}}{alpha }}-1&={frac  {x_{1}+x_{2}+cdots +x_{n}}{alpha }}-n\&=n-n\&=0.end{aligned}}

Returning to (*),


x1x2⋯xnαn≤e0=1,{displaystyle {frac {x_{1}x_{2}cdots x_{n}}{alpha ^{n}}}leq e^{0}=1,}{frac  {x_{1}x_{2}cdots x_{n}}{alpha ^{n}}}leq e^{0}=1,

which produces x1x2 · · · xnαn, hence the result[3]


x1x2⋯xnn≤α.{displaystyle {sqrt[{n}]{x_{1}x_{2}cdots x_{n}}}leq alpha .}{sqrt[ {n}]{x_{1}x_{2}cdots x_{n}}}leq alpha .


Generalizations



Weighted AM–GM inequality


There is a similar inequality for the weighted arithmetic mean and weighted geometric mean. Specifically, let the nonnegative numbers x1, x2, . . . , xn and the nonnegative weights w1, w2, . . . , wn be given. Set w = w1 + w2 + · · · + wn. If w > 0, then the inequality


w1x1+w2x2+⋯+wnxnw≥x1w1x2w2⋯xnwnw{displaystyle {frac {w_{1}x_{1}+w_{2}x_{2}+cdots +w_{n}x_{n}}{w}}geq {sqrt[{w}]{x_{1}^{w_{1}}x_{2}^{w_{2}}cdots x_{n}^{w_{n}}}}}{frac  {w_{1}x_{1}+w_{2}x_{2}+cdots +w_{n}x_{n}}{w}}geq {sqrt[ {w}]{x_{1}^{{w_{1}}}x_{2}^{{w_{2}}}cdots x_{n}^{{w_{n}}}}}

holds with equality if and only if all the xk with wk > 0 are equal. Here the convention 00 = 1 is used.


If all wk = 1, this reduces to the above inequality of arithmetic and geometric means.



Proof using Jensen's inequality


Using the finite form of Jensen's inequality for the natural logarithm, we can prove the inequality between the weighted arithmetic mean and the weighted geometric mean stated above.


Since an xk with weight wk = 0 has no influence on the inequality, we may assume in the following that all weights are positive. If all xk are equal, then equality holds. Therefore, it remains to prove strict inequality if they are not all equal, which we will assume in the following, too. If at least one xk is zero (but not all), then the weighted geometric mean is zero, while the weighted arithmetic mean is positive, hence strict inequality holds. Therefore, we may assume also that all xk are positive.


Since the natural logarithm is strictly concave, the finite form of Jensen's inequality and the functional equations of the natural logarithm imply


ln⁡(w1x1+⋯+wnxnw)>w1wln⁡x1+⋯+wnwln⁡xn=ln⁡x1w1x2w2⋯xnwnw.{displaystyle {begin{aligned}ln {Bigl (}{frac {w_{1}x_{1}+cdots +w_{n}x_{n}}{w}}{Bigr )}&>{frac {w_{1}}{w}}ln x_{1}+cdots +{frac {w_{n}}{w}}ln x_{n}\&=ln {sqrt[{w}]{x_{1}^{w_{1}}x_{2}^{w_{2}}cdots x_{n}^{w_{n}}}}.end{aligned}}}{begin{aligned}ln {Bigl (}{frac  {w_{1}x_{1}+cdots +w_{n}x_{n}}w}{Bigr )}&>{frac  {w_{1}}w}ln x_{1}+cdots +{frac  {w_{n}}w}ln x_{n}\&=ln {sqrt[ {w}]{x_{1}^{{w_{1}}}x_{2}^{{w_{2}}}cdots x_{n}^{{w_{n}}}}}.end{aligned}}

Since the natural logarithm is strictly increasing,


w1x1+⋯+wnxnw>x1w1x2w2⋯xnwnw.{displaystyle {frac {w_{1}x_{1}+cdots +w_{n}x_{n}}{w}}>{sqrt[{w}]{x_{1}^{w_{1}}x_{2}^{w_{2}}cdots x_{n}^{w_{n}}}}.}{frac  {w_{1}x_{1}+cdots +w_{n}x_{n}}w}>{sqrt[ {w}]{x_{1}^{{w_{1}}}x_{2}^{{w_{2}}}cdots x_{n}^{{w_{n}}}}}.


Other generalizations


Other generalizations of the inequality of arithmetic and geometric means include:




  • Muirhead's inequality,


  • Maclaurin's inequality,


  • Generalized mean inequality.



See also



  • Ky Fan inequality

  • Young's inequality for products



Notes





References





  1. ^ Steele, J. Michael (2004). The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities. MAA Problem Books Series. Cambridge University Press. ISBN 978-0-521-54677-5. OCLC 54079548..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ Cauchy, Augustin-Louis (1821). Cours d'analyse de l'École Royale Polytechnique, première partie, Analyse algébrique, Paris. The proof of the inequality of arithmetic and geometric means can be found on pages 457ff.


  3. ^ Arnold, Denise; Arnold, Graham (1993). Four unit mathematics. Hodder Arnold H&S. p. 242. ISBN 978-0-340-54335-1. OCLC 38328013.




External links



  • Arthur Lohwater (1982). "Introduction to Inequalities". Online e-book in PDF format.



Popular posts from this blog

Italian cuisine

Bulgarian cuisine

Carrot