Elementary function
In mathematics, an elementary function is a function of one variable which is the composition of a finite number of arithmetic operations (+ – × ÷), exponentials, logarithms, constants, and solutions of algebraic equations (a generalization of nth roots).
The elementary functions include:
- Powers of x:x,x2,x3{displaystyle x:x,x^{2},x^{3}}, etc.
- Roots of x:x,x3,{displaystyle x:{sqrt {x}},{sqrt[{3}]{x}},}, etc.
Exponential functions: ex{displaystyle e^{x}}
Logarithms: logx{displaystyle log x}
Trigonometric functions: sinx,cosx{displaystyle sin x,cos x} etc.- Inverse trigonometric functions
Hyperbolic functions: sinhx,coshx{displaystyle sinh x,cosh x} etc.- All functions obtained by replacing x with any of the previous functions
- All functions obtained by adding, subtracting, multiplying or dividing any of the previous functions[1]
It follows directly from the definition that the set of elementary functions is closed under arithmetic operations and composition. It is also closed under differentiation. It is not closed under limits and infinite sums.
Importantly, the elementary functions are not closed under integration, as shown by Liouville's theorem, see Nonelementary integral. The Liouvillian functions are defined as the elementary functions and, recursively, the integrals of the Liouvillian functions.
Some elementary functions, such as roots, logarithms, or inverse trigonometric functions, are not entire functions and may be multivalued.
Elementary functions were introduced by Joseph Liouville in a series of papers from 1833 to 1841.[2][3][4] An algebraic treatment of elementary functions was started by Joseph Fels Ritt in the 1930s.[5]
Contents
1 Examples
1.1 Non-elementary functions
2 Differential algebra
3 See also
4 Notes
5 References
6 Further reading
7 External links
Examples
Examples of elementary functions include:
- Addition, e.g. (x+1)
- Multiplication, e.g. (2x)
Polynomial functions- etanx1+x2sin(1+(lnx)2){displaystyle {dfrac {e^{tan x}}{1+x^{2}}}sin left({sqrt {1+(ln x)^{2}}}right)}
- −iln(x+i1−x2){displaystyle -iln(x+i{sqrt {1-x^{2}}})}
The last function is equal to arccosx{displaystyle arccos x}, the inverse cosine, in the entire complex plane. Hence, it is an elementary function.
Non-elementary functions
An example of a function that is not elementary is the error function
- erf(x)=2π∫0xe−t2dt,{displaystyle mathrm {erf} (x)={frac {2}{sqrt {pi }}}int _{0}^{x}e^{-t^{2}},dt,}
a fact that may not be immediately obvious, but can be proven using the Risch algorithm.
- See also the examples in Liouvillian function and Nonelementary integral.
Differential algebra
The mathematical definition of an elementary function, or a function in elementary form, is considered in the context of differential algebra. A differential algebra is an algebra with the extra operation of derivation (algebraic version of differentiation). Using the derivation operation new equations can be written and their solutions used in extensions of the algebra. By starting with the field of rational functions, two special types of transcendental extensions (the logarithm and the exponential) can be added to the field building a tower containing elementary functions.
A differential field F is a field F0 (rational functions over the rationals Q for example) together with a derivation map u → ∂u. (Here ∂u is a new function. Sometimes the notation u′ is used.) The derivation captures the properties of differentiation, so that for any two elements of the base field, the derivation is linear
- ∂(u+v)=∂u+∂v{displaystyle partial (u+v)=partial u+partial v}
and satisfies the Leibniz product rule
- ∂(u⋅v)=∂u⋅v+u⋅∂v.{displaystyle partial (ucdot v)=partial ucdot v+ucdot partial v,.}
An element h is a constant if ∂h = 0. If the base field is over the rationals, care must be taken when extending the field to add the needed transcendental constants.
A function u of a differential extension F[u] of a differential field F is an elementary function over F if the function u
- is algebraic over F, or
- is an exponential, that is, ∂u = u ∂a for a ∈ F, or
- is a logarithm, that is, ∂u = ∂a / a for a ∈ F.
(this is Liouville's theorem).
See also
- Closed-form expression
- Differential Galois theory
- Algebraic function
- Transcendental function
Notes
^ Ordinary Differential Equations. Dover. 1985. p. 17. ISBN 0-486-64940-7..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
^ Liouville 1833a.
^ Liouville 1833b.
^ Liouville 1833c.
^ Ritt 1950.
References
Liouville, Joseph (1833a). "Premier mémoire sur la détermination des intégrales dont la valeur est algébrique". Journal de l'École Polytechnique. tome XIV: 124–148.
Liouville, Joseph (1833b). "Second mémoire sur la détermination des intégrales dont la valeur est algébrique". Journal de l'École Polytechnique. tome XIV: 149–193.
Liouville, Joseph (1833c). "Note sur la détermination des intégrales dont la valeur est algébrique". Journal für die reine und angewandte Mathematik. 10: 347–359.
Ritt, Joseph (1950). Differential Algebra. AMS.
Rosenlicht, Maxwell (1972). "Integration in finite terms". American Mathematical Monthly. 79 (9): 963–972. doi:10.2307/2318066. JSTOR 2318066.
Further reading
- Davenport, J. H.: What Might "Understand a Function" Mean. In: Kauers, M.; Kerber, M., Miner, R.; Windsteiger, W.: Towards Mechanized Mathematical Assistants. Springer, Berlin/Heidelberg 2007, p. 55-65. [1]
External links
Elementary functions at Encyclopaedia of Mathematics- Weisstein, Eric W. "Elementary function". MathWorld.