Caesium iodide











































































































































































Caesium iodide

Kristall CsI(Ti).JPG
CsI crystal


Kristall-CsI(Tl) mit Skala.jpg
Scintillating CsI crystal


CsCl polyhedra.png
Crystal structure

Names

IUPAC name
Caesium iodide

Other names
Cesium iodide

Identifiers

CAS Number



  • 7789-17-5 ☑Y[1]


3D model (JSmol)


  • Interactive image


ChemSpider


  • 23003 ☑Y


ECHA InfoCard

100.029.223

EC Number
232-145-2


PubChem CID


  • 24601


RTECS number
FL0350000

UNII

  • U1P3GVC56L





Properties

Chemical formula

CsI

Molar mass
259.809 g/mol[2]
Appearance
white crystalline solid

Density
4.51 g/cm3[2]

Melting point
632 °C (1,170 °F; 905 K)[2]

Boiling point
1,280 °C (2,340 °F; 1,550 K)[2]

Solubility in water

848 g/L (25 °C)[2]


Magnetic susceptibility (χ)

-82.6·10−6 cm3/mol[3]


Refractive index (nD)

1.9790 (0.3 µm)
1.7873 (0.59 µm)
1.7694 (0.75 µm)
1.7576 (1 µm)
1.7428 (5 µm)
1.7280 (20 µm)[4]
Structure

Crystal structure


CsCl, cP2

Space group

Pm3m, No. 221[5]

Lattice constant


a = 0.4503 nm


Lattice volume (V)

0.0913 nm3


Formula units (Z)

1

Coordination geometry

Cubic (Cs+)
Cubic (I)
Thermochemistry


Heat capacity (C)

52.8 J/mol·K[6]


Std molar
entropy (So298)

123.1 J/mol·K[6]


Std enthalpy of
formation (ΔfHo298)

−346.6 kJ/mol[6]


Gibbs free energy (ΔfG˚)

-340.6 kJ/mol[6]
Hazards

GHS pictograms

The exclamation-mark pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)The health hazard pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)The environment pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)

GHS signal word
Warning

GHS hazard statements


H315, H317, H319, H335

GHS precautionary statements


P201, P202, P261, P264, P270, P271, P272, P273, P280, P281, P301+312, P302+352, P304+340, P305+351+338, P308+313, P312, P321, P330, P332+313, P333+313, P337+313, P362, P363, P391, P403+233

Flash point
Non-flammable
Lethal dose or concentration (LD, LC):


LD50 (median dose)

2386 mg/kg (oral, rat)[1]
Related compounds

Other anions


Caesium fluoride
Caesium chloride
Caesium bromide
Caesium astatide

Other cations


Lithium iodide
Sodium iodide
Potassium iodide
Rubidium iodide
Francium iodide

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).


☑Y verify (what is ☑Y‹See TfM›☒N ?)

Infobox references



Caesium iodide or cesium iodide (chemical formula CsI) is the ionic compound of caesium and iodine. It is often used as the input phosphor of an X-ray image intensifier tube found in fluoroscopy equipment. Caesium iodide photocathodes are highly efficient at extreme ultraviolet wavelengths.[7]




Contents






  • 1 Synthesis and structure


  • 2 Properties


  • 3 Applications


  • 4 References


  • 5 Cited sources





Synthesis and structure




Monatomic caesium halide wires grown inside double-wall carbon nanotubes.[8]


Bulk caesium iodide crystals have the cubic CsCl crystal structure, but the structure type of nanometer-thin CsI films depends on the substrate material – it is CsCl for mica and NaCl for LiF, NaBr and NaCl substrates.[9]


Caesium iodide atomic chains can be grown inside double-wall carbon nanotubes. In such chains I atoms appear brighter than Cs atoms in electron micrographs despite having a smaller mass. This difference was explained by the charge difference between Cs atoms (positive), inner nanotube walls (negative) and I atoms (negative). As a result, Cs atoms are attracted to the walls and vibrate more strongly than I atoms, which are pushed toward the nanotube axis.[8]



Properties




































Solubility of CsCl in water[10]
Т (°C)
0
10
20
25
30
40
50
60
70
80
90
100
S (wt%)
30.9
37.2
43.2
45.9
48.6
53.3
57.3
60.7
63.6
65.9
67.7
69.2


Applications


An important application of caesium iodide crystals, which are scintillators, is electromagnetic calorimetry in experimental particle physics. Pure CsI is a fast and dense scintillating material with relatively low light yield that increases significantly with cooling.[11] It shows two main emission components: one in the near ultraviolet region at the wavelength of 310 nm and one at 460 nm. The drawbacks of CsI are a high temperature gradient and a slight hygroscopicity.


Caesium iodide is used as a beamsplitter in Fourier transform infrared (FTIR) spectrometers. It has a wider transmission range than the more common potassium bromide beamsplitters, extending its working range into the far infrared. However, optical-quality CsI crystals are very soft and hard to cleave or polish. They should also be coated (typically with germanium) and stored in a desiccator, to minimize interaction with atmospheric water vapors.[12]


In addition to image intensifier input phosphors, caesium iodide is often also used in medicine as the scintillating material in flat panel x-ray detectors.[13]



References









  1. ^ ab Cesium iodide. U.S. National Library of Medicine


  2. ^ abcde Haynes, p. 4.57


  3. ^ Haynes, p. 4.132


  4. ^ Haynes, p. 10.240


  5. ^ Huang, Tzuen-Luh; Ruoff, Arthur L. (1984). "Equation of state and high-pressure phase transition of CsI". Physical Review B. 29 (2): 1112. Bibcode:1984PhRvB..29.1112H. doi:10.1103/PhysRevB.29.1112..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  6. ^ abcd Haynes, p. 5.10


  7. ^ Kowalski, M. P.; Fritz, G. G.; Cruddace, R. G.; Unzicker, A. E.; Swanson, N. (1986). "Quantum efficiency of cesium iodide photocathodes at soft x-ray and extreme ultraviolet wavelengths". Applied Optics. 25 (14): 2440. Bibcode:1986ApOpt..25.2440K. doi:10.1364/AO.25.002440. PMID 18231513.


  8. ^ ab Senga, Ryosuke; Komsa, Hannu-Pekka; Liu, Zheng; Hirose-Takai, Kaori; Krasheninnikov, Arkady V.; Suenaga, Kazu (2014). "Atomic structure and dynamic behaviour of truly one-dimensional ionic chains inside carbon nanotubes". Nature Materials. 13 (11): 1050. Bibcode:2014NatMa..13.1050S. doi:10.1038/nmat4069. PMID 25218060.


  9. ^ Schulz, L. G. (1951). "Polymorphism of cesium and thallium halides". Acta Crystallographica. 4 (6): 487. doi:10.1107/S0365110X51001641.


  10. ^ Haynes, p. 5.191


  11. ^ Mikhailik, V.; Kapustyanyk, V.; Tsybulskyi, V.; Rudyk, V.; Kraus, H. (2015). "Luminescence and scintillation properties of CsI: A potential cryogenic scintillator". Physica Status Solidi B. 252 (4): 804–810. arXiv:1411.6246. Bibcode:2015PSSBR.252..804M. doi:10.1002/pssb.201451464.


  12. ^ Sun, Da-Wen (2009). Infrared Spectroscopy for Food Quality Analysis and Control. Academic Press. pp. 158–. ISBN 978-0-08-092087-0.


  13. ^ Lança, Luís; Silva, Augusto (2012). "Digital Radiography Detectors: A Technical Overview". Digital Imaging Systems for Plain Radiography (PDF). Springer. doi:10.1007/978-1-4614-5067-2_2. ISBN 978-1-4614-5066-5.




Cited sources



  • Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, FL: CRC Press. ISBN 1439855110.









Popular posts from this blog

Shashamane

Carrot

Deprivation index